接下来分析Raw特征和Histogram特征。
Raw特征:将图像缩放到16*16的像素空间内,各个像素值灰度化后为(0,1),结合高斯核函数,然后得到16*16=256维特征向量。
实现源码如下:
/*
* Struck: Structured Output Tracking with Kernels
*
* Code to accompany the paper:
* Struck: Structured Output Tracking with Kernels
* Sam Hare, Amir Saffari, Philip H. S. Torr
* International Conference on Computer Vision (ICCV), 2011
*
* Copyright (C) 2011 Sam Hare, Oxford Brookes University, Oxford, UK
*
* This file is part of Struck.
*
* Struck is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Struck is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Struck. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "RawFeatures.h"
#include "Config.h"
#include "Sample.h"
#include "Rect.h"
#include <iostream>
using namespace Eigen;
using namespace cv;
static const int kPatchSize = 16;
RawFeatures::RawFeatures(const Config& conf) :
m_patchImage(kPatchSize, kPatchSize, CV_8UC1)
{
SetCount(kPatchSize*kPatchSize);//设置维数大小
}
void RawFeatures::UpdateFeatureVector(const Sample& s)
{
IntRect rect = s.GetROI(); // note this truncates to integers
cv::Rect roi(rect.XMin(), rect.YMin(), rect.Width(), rect.Height());
cv::resize(s.GetImage().GetImage(0)(roi), m_patchImage, m_patchImage.size());
//equalizeHist(m_patchImage, m_patchImage);
int ind = 0;
for (int i = 0; i < kPatchSize; ++i)
{
uchar* pixel = m_patchImage.ptr(i);
for (int j = 0; j < kPatchSize; ++j, ++pixel, ++ind)
{
m_featVec[ind] = ((double)*pixel)/255; //得到各个像素点的数值,存入m_featVec中。
}
}
}
Histogram特征:将图像分为4层,第i层分为i*i个cell,每个cell计算其16个强度的直方统计分布向量,其特征维数为(1+4+9+16)*16=480维
/*
* Struck: Structured Output Tracking with Kernels
*
* Code to accompany the paper:
* Struck: Structured Output Tracking with Kernels
* Sam Hare, Amir Saffari, Philip H. S. Torr
* International Conference on Computer Vision (ICCV), 2011
*
* Copyright (C) 2011 Sam Hare, Oxford Brookes University, Oxford, UK
*
* This file is part of Struck.
*
* Struck is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Struck is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Struck. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "HistogramFeatures.h"
#include "Config.h"
#include "Sample.h"
#include "Rect.h"
#include <iostream>
using namespace Eigen;
using namespace cv;
using namespace std;
static const int kNumBins = 16; //直方图 强度
static const int kNumLevels = 4;//层数
static const int kNumCellsX = 3;//cell个数
static const int kNumCellsY = 3;//cell个数
HistogramFeatures::HistogramFeatures(const Config& conf)
{
int nc = 0;
for (int i = 0; i < kNumLevels; ++i)
{
//nc += 1 << 2*i;
nc += (i+1)*(i+1);
}
SetCount(kNumBins*nc);//设置特征维数大小 480维
cout << "histogram bins: " << GetCount() << endl;
}
void HistogramFeatures::UpdateFeatureVector(const Sample& s)
{
IntRect rect = s.GetROI(); // note this truncates to integers
//cv::Rect roi(rect.XMin(), rect.YMin(), rect.Width(), rect.Height());
//cv::resize(s.GetImage().GetImage(0)(roi), m_patchImage, m_patchImage.size());
m_featVec.setZero();
VectorXd hist(kNumBins);
int histind = 0;
for (int il = 0; il < kNumLevels; ++il)
{
//第il层划分cell个单元
int nc = il+1;
float w = s.GetROI().Width()/nc;
float h = s.GetROI().Height()/nc;
FloatRect cell(0.f, 0.f, w, h);
//获取16个强度的直方图的分布图
for (int iy = 0; iy < nc; ++iy)
{
cell.SetYMin(s.GetROI().YMin()+iy*h);
for (int ix = 0; ix < nc; ++ix)
{
cell.SetXMin(s.GetROI().XMin()+ix*w);
s.GetImage().Hist(cell, hist);
m_featVec.segment(histind*kNumBins, kNumBins) = hist;
++histind;
}
}
}
m_featVec /= histind;
}