临床决策支持与机器学习建模框架研究
1 临床决策支持中的知识翻译
1.1 研究背景与目标
在耳鸣治疗的临床决策支持中,数据挖掘软件发挥着重要作用。WEKA 用于训练预测(诊断)模型,LISp - Miner 则用于提取关联规则和行动规则。然而,LISp - Miner 只能将规则导出为文本文件,无法直接嵌入 eTRT 框架。因此,研究的目标是开发一个通用的翻译器,将 LISp - Miner 提取的规则转换为基于 Java 的 eTRT 框架,并将这些规则编码到 eTRT 知识库中。
1.2 关联规则与行动规则
1.2.1 关联规则
关联规则由 LISp - Miner 的 4ft - Miner 模块生成,用于根据患者的属性预测耳鸣类别。规则形式为 (ϕ => δ),其中 ϕ 是前提,δ 是结论。每个规则有支持度和置信度两个特征。在知识编码中,相关组件包括假设、决策规则的置信度和支持度。假设由部分条件和预测的耳鸣类别组成,部分条件用“&”分隔。
关联规则编码到 eTRT 后包含以下组件:
- 唯一名称
- 插槽:相当于提取规则中的属性,但由于 JESS 框架的命名约定,属性名称和插槽名称可能不对应,需要额外的匹配过程。
- 模板:一组插槽,代表诸如听力检查和访谈等对象。算法根据预定义的字典确定插槽所属的模板。
- 诊断:一个特殊模板,包含耳鸣类别、诊断置信度、诊断支持度和诊断的可读解释。
1.2.2 行动规则
行动规则由 LISp - Miner 的 Act4ft 模块生成,用于建议改变治疗方法以改善患者结果。