29、临床决策支持与机器学习建模框架研究

临床决策支持与机器学习建模框架研究

1 临床决策支持中的知识翻译

1.1 研究背景与目标

在耳鸣治疗的临床决策支持中,数据挖掘软件发挥着重要作用。WEKA 用于训练预测(诊断)模型,LISp - Miner 则用于提取关联规则和行动规则。然而,LISp - Miner 只能将规则导出为文本文件,无法直接嵌入 eTRT 框架。因此,研究的目标是开发一个通用的翻译器,将 LISp - Miner 提取的规则转换为基于 Java 的 eTRT 框架,并将这些规则编码到 eTRT 知识库中。

1.2 关联规则与行动规则

1.2.1 关联规则

关联规则由 LISp - Miner 的 4ft - Miner 模块生成,用于根据患者的属性预测耳鸣类别。规则形式为 (ϕ => δ),其中 ϕ 是前提,δ 是结论。每个规则有支持度和置信度两个特征。在知识编码中,相关组件包括假设、决策规则的置信度和支持度。假设由部分条件和预测的耳鸣类别组成,部分条件用“&”分隔。

关联规则编码到 eTRT 后包含以下组件:
- 唯一名称
- 插槽:相当于提取规则中的属性,但由于 JESS 框架的命名约定,属性名称和插槽名称可能不对应,需要额外的匹配过程。
- 模板:一组插槽,代表诸如听力检查和访谈等对象。算法根据预定义的字典确定插槽所属的模板。
- 诊断:一个特殊模板,包含耳鸣类别、诊断置信度、诊断支持度和诊断的可读解释。

1.2.2 行动规则

行动规则由 LISp - Miner 的 Act4ft 模块生成,用于建议改变治疗方法以改善患者结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值