YOLOv3 在Windows 下的一些常用的命令行操作(训练,批量测试,计算mAP,计算anchors等)

此篇博客是防止自己遗忘YOLOv3的一些命令行操作,方便自己查阅。

YOLOv3官方自带操作

一、训练

darknet.exe detector train data/voc.data data/yolov3-spp-voc.cfg data/pretrain/darknet53.conv.74

二、测试单幅图像

darknet.exe detector test data/obj.data yolov3-custom.cfg data/weights/yolov3-custom.weights -thresh 0.25

三、使用手机摄像头实时检测

darknet.exe detector demo data/voc.data data/yolov3-voc.cfg data/weights/yolov3-voc.weights http://192.168.0.100:8080/video?dummy=param.mjpg -i 0

四、快速计算mAP

darknet.exe detector map data/obj.data yolov3-custom.cfg data/weights/yolov3-custom.weights -thresh 0.25 -iou_thresh 0.45

五、计算适合数据集的anchors

darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416

一些定制化操作

一、批量测试保存结果图和坐标数据

1.用visual studio打开darknet.sln,找到名为detector.c的C文件,ctrl+f搜索"save_image(im, “predictions”)",注释掉这一行,然后将其替换为如下代码:

char b[512];
sprintf(b, "data/output/%s", GetFilename(input));//保存在data/output中
save_image(im, b);

1
2.此时直接build会报错,出现unresolved external symbol GetFilename的error,要在detector.c开头static int coco_ids[] = 下面加一段代码,然后再重新build:

char *GetFilename(char *p)
{ 
    static char name[20]={""};
    char *q = strrchr(p,'/') + 1;
    strncpy(name,q,6);//注意后面的6,如果你的测试集的图片的名字字符(不包括后缀)是其他长度,请改为你需要的长度,例如000001.jpg
    return name;
}

在这里插入图片描述
3.在dark-master/build/darknet/x64/data/ 路径下新建一个名为output的文件夹,cmd命令行进入dark-master/build/darknet/x64,然后输入:

darknet.exe detector test data/obj.data yolov3-custom.cfg data/weights/yolov3-custom.weights -thresh 0.25 -dont_show -ext_output < data/test.txt > data/result.txt

  • < data/test.txt > test.txt里面写了所有测试图片的路径

4.运行结束后,会在dark-master/build/darknet/x64/data/output下出现预测好的所有图片。
3然后会在dark-master/build/darknet/x64/data/ 下出现预测好的坐标数据和置信值的文件result.txt (我的数据集只有一类):
在这里插入图片描述

二、隐藏label

有时候我们不需要图片上显示label,用visual studio打开darknet.sln,找到名为image.c的C文件,搜索draw_detections_v3(),找到里面的draw_label这行,并注释掉,然后重新build项目。这样预测出来的图片就不带标签了。
5
6

运行yolov5的命令包括训练命令和检测命令。训练命令使用数据集进行训练,可以使用以下命令:python yolov5-master/train.py --img 640 --batch 16 --epochs 5 --data ./yolov5-master/data/coco128.yaml --cfg ./yolov5-master/models/yolov5s.yaml --weights ./yolov5-master/yolov5s.pt。 而检测命令可以用于检测环境是否搭建好,可以使用以下命令:python yolov5-master/detect.py --source yolov5-master/inference/images/ --weights ./yolov5-master/yolov5s.pt。 此外,如果要在单个CPU上运行yolov5,可以使用以下命令:python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Yolov5 网络常用命令代码](https://blog.csdn.net/weixin_71096631/article/details/131081122)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [yolov5项目的调试与运行](https://blog.csdn.net/qq_43404472/article/details/128325262)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔法战胜魔法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值