论文阅读笔记(七):Rethinking the Inception Architecture for Computer Vision ( Inception-V3 )

本文是论文的相关摘要,因为作者的原话最容易理解,所以将精彩语句摘录,帮助快速回忆起文章主要信息。后续会将把论文英文原版语句补充进来,持续更新。


计算效率和低参数计数仍是各种应用场景的限制因素,例如移动视觉和大数据场景。

适当的分解卷积和积极的正则化来尽可能地有效利用增加的计算。

目标检测[5],分割[12],行人姿势评估[22],视频分类[8],目标跟踪[23]和超分辨率[3]。

GoogleNet只使用了500万参数,与其前身AlexNet相比减少了12倍,AlexNet使用了6000万参数。此外,VGGNet使用了比AlexNet大约多3倍的参数。

优化Inception架构。

通过大量使用降维和Inception模块的并行结构来实现,这允许减轻结构变化对邻近组件的影响。

避免表征瓶颈,尤其是在网络的前面。pooling层。

信息内容不能仅通过表示的维度来评估,因为它丢弃了诸如相关结构的重要因素;维度仅提供信息内容的粗略估计。

高维度的表示在网络中更容易局部处理。

空间聚合可以在较低维度嵌入上完成,而不会在表示能力上造成许多或任何损失。

相邻单元之间的强相关性会导致维度缩减期间的信息损失少得多。维度减小甚至会促进更快的学习。

深度和宽度两者并行增加,则可以达到恒定计算量的最佳改进。

适当的分解,我们可以得到更多的解耦参数,从而加快训练。

GoogLeNet的大部分初始收益来源于大量地使用降维。预期相近激活的输出是高度相关的。因此,我们可以预期,它们的激活可以在聚合之前被减少,并且这应该会导致类似的富有表现力的局部表示。

卷积可以被具有相同输入尺寸和输出深度的参数较小的多层网络所取代。

通过两层的卷积结构再次利用平移不变性来代替全连接的组件。

可以通过1×n卷积和后面接一个n×1卷积替换任何n×n卷积,并且随着n增长,计算成本节省显著增加。

辅助分类器以改善非常深的网络的收敛。最初的动机是将有用的梯度推向较低层,使其立即有用,并通过抵抗非常深的网络中的消失梯度问题来提高训练过程中的收敛。

我们认为辅助分类器起着正则化项的作用。

卷积网络使用一些池化操作来缩减特征图的网格大小。为了避免表示瓶颈,在应用最大池化或平均池化之前,需要扩展网络滤波器的激活维度。

缩减网格尺寸的同时扩展滤波器组的Inception模块。它不仅廉价并且避免了原则1中提出的表示瓶颈。

产生高维度的地方,稀疏表示是最重要的,因为与空间聚合相比,局部处理(1×1 卷积)的比率增加。

提出了一种通过估计训练期间标签丢弃的边缘化效应来对分类器层进行正则化的机制。

如果对应实际标签的逻辑单元远大于其它的逻辑单元,那么对数概率会接近最大值。然而这可能会引起两个问题:

首先,它可能导致过拟合:如果模型学习到对于每一个训练样本,分配所有概率到实际标签上,那么它不能保证泛化能力。

第二,它鼓励最大的逻辑单元与所有其它逻辑单元之间的差距变大,与有界限的梯度相结合,这会降低模型的适应能力。直观上讲这会发生,因为模型变得对它的预测过于自信。

提出了一个鼓励模型不那么自信的机制。如果目标是最大化训练标签的对数似然,这可能不是想要的,但它确实使模型正规化并使其更具适应性。

在神经网络中分解卷积,积极降维,可以导致计算成本相对较低的网络,同时保持高质量 。

较低的参数数量、额外的正则化、批标准化的辅助分类器和标签平滑的组合允许在相对适中大小的训练集上训练高质量的网络。

相关参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值