间隔重复记忆之SM-5

SM-5算法说明

  1. 将知识拆分长最小单元。

  2. 每一个知识点分配一个efactor,初始值为2.5。

  3. 使用重复次数和efactor制作一张表,叫做OF Matrix,使用以下公式初始化:

    OF(1,EF):=4

    for n>1 OF(n,EF):=EF

    其中:
    ◦ OF(n,EF) - efactor和重复次数对应的最优因数。

  4. 使用OF Matrix来计算间隔时间:

    I(n,EF)=OF(n,EF)*I(n-1,EF)

    I(1,EF)=OF(1,EF)

    其中:
    ◦ I(n,EF) - 知识点efactor和重复次数对应的间隔时间。
    ◦ OF(n,EF) - OF Matrix中对应重复次数和efactor的值。

  5. 评估知识点记忆结果,值为0-5。具体参见SM-2中说明。

  6. 每次重复后更新知识点相关efactor,使用以下公式:

    EF’:=EF+(0.1-(5-q)*(0.08+(5-q)*0.02))

    其中:
    ◦ EF’ - 新的efactor
    ◦ EF - 旧的efactor
    ◦ q - 记忆质量,值为0,1,2,3,4,5。

    如果计算后的efactor小于1.3,则赋值为1.3。

  7. 更新OF Matrix中相关值,示范公示如下:

    OF’:=OF*(0.72+q*0.07)

    OF*:=(1-fraction)OF+fractionOF’*

    其中:

    ◦ OF *- 新值*
    ◦ OF' - 临时
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值