SM-5算法说明
-
将知识拆分长最小单元。
-
每一个知识点分配一个efactor,初始值为2.5。
-
使用重复次数和efactor制作一张表,叫做OF Matrix,使用以下公式初始化:
OF(1,EF):=4
for n>1 OF(n,EF):=EF
其中:
◦ OF(n,EF) - efactor和重复次数对应的最优因数。 -
使用OF Matrix来计算间隔时间:
I(n,EF)=OF(n,EF)*I(n-1,EF)
I(1,EF)=OF(1,EF)
其中:
◦ I(n,EF) - 知识点efactor和重复次数对应的间隔时间。
◦ OF(n,EF) - OF Matrix中对应重复次数和efactor的值。 -
评估知识点记忆结果,值为0-5。具体参见SM-2中说明。
-
每次重复后更新知识点相关efactor,使用以下公式:
EF’:=EF+(0.1-(5-q)*(0.08+(5-q)*0.02))
其中:
◦ EF’ - 新的efactor
◦ EF - 旧的efactor
◦ q - 记忆质量,值为0,1,2,3,4,5。如果计算后的efactor小于1.3,则赋值为1.3。
-
更新OF Matrix中相关值,示范公示如下:
OF’:=OF*(0.72+q*0.07)
OF*:=(1-fraction)OF+fractionOF’*
其中:
◦ OF *- 新值* ◦ OF' - 临时