1.本地化模型训练
承接上篇本地化部署,进行资料上传训练。包括一次性文件训练,和后续临时新文件训练。也包括加入智能体,加入知识库训练,修正结果集。
准备工作
在Cherry Studio文件下创建两个文件夹,一个gas文件夹,用于燃气行业数据训练,一个xtjc文件夹没用于系统集成文件训练。
gas文件夹:
xtjc文件夹
1.1.单个文件上传训练
把需要训练用到的资料放入对应文件夹后,检查模型是否运行或者存住。
Ollama run deepseek-r1:14b
1.1.1.打开Cherry Studio的知识库,添加分类gas_8b(按照燃气行业和使用8b模型训练)。
在文件区域双击选择文件夹下面文件,开始上传训练资料。
当右侧蓝点全部变成绿色打钩状态,说明上传完成。
1.2.文件目录形式上传。
选择xtjc_14b的知识库,在目录行添加添加目录。选择Cherry Studio按照目录下新建的准备资料库xtjc文件夹。
上传完成后,右侧变绿色打钩状态。说明上传完成。
到此步骤,模型训练准备阶段就完成了。接下来就是如何设置训练。
2.开始训练。
2.1.训练gas行业。
编辑默认助手,选择模型DeepSeek-r1:8b模型。
窗体输入栏设置。
@符号下选择DeepSeek-r1:8b。知识库选择gas_8b。
开始询问问题:看如何回答
3.一次性完成后,后续有新的资料需要喂养,如何解决呢。
还是选择@符号模型,其次选择上传文档选项。浏览我们需要上传的新添加文件。
回答如下后,因为我们只使用了这一个文件,所以回答的参考单一。
3.1.加入智能体
接下来就是加入到我们知识库里面。
这样我们把上传文件删除了,但是痕迹却被我们保留了,等于丰富了知识库内容。
3.2.修正
如果回答的感觉不是很满意,怎么办呢,那我们对结果进行编辑修正。
添加如下描述
轴承的摩擦力大小:
气体粘度变化:
修正完成,我们再来问同样的问题,看看是什么回答。发现虽然在结果集虽然也是三条但是内容已经变化,分析过程已经加入考虑因素了。