大模型 [Ollama/DeepSeek/Cherry Studio]三步骤搭建本地化训练模型

[Ollama+Cherry Studio]三步骤搭建本地化训练模型

好久没有写CSDN了,一直在写公众号。结果发现大伙用的最多的还是CSDN

1.Ollama安装

1.1进去Ollama官网:https://ollama.com/。点击Download下载

在这里插入图片描述

1.1.1下载完,直接双击 OllamaSetup.exe安装,不存在选择安装位置。默认安装C盘。安装好之后我们迁移位置。

1.1.2安装完成验证:cmd输入:ollama -h。出现如下图说明安装成功。

在这里插入图片描述

1.2修改安装位置。

1.2.1首先在任务管理器中关闭 Ollama 和 ollama.exe

1.2.2右击我的电脑属性:进入环境变量配置。系统变量下新建。如下图

在这里插入图片描述
把C盘下Ollama位置找到(C:\Users%username%\AppData\Local\Programs\Ollama),并复制到环境变量配置的对应位置(D:\software\company\Ollama),迁移任务完成。

1.2.3设置记住上一次会话。
 系统变量里面新建**OLLAMA_NOHISTORY**属性,指为**true**。

在这里插入图片描述

其他参数列举

OLLAMA_DEBUG: 显示额外的调试信息(例如:OLLAMA_DEBUG=1)。
OLLAMA_HOST: Ollama 服务器的 IP 地址(默认值:127.0.0.1:11434)。
OLLAMA_KEEP_ALIVE: 模型在内存中保持加载的时长(默认值:“5m”)。
OLLAMA_MAX_LOADED_MODELS: 每个 GPU 上最大加载模型数量。
OLLAMA_MAX_QUEUE: 请求队列的最大长度。
OLLAMA_MODELS: 模型目录的路径。
OLLAMA_NUM_PARALLEL: 最大并行请求数。
OLLAMA_NOPRUNE: 启动时不修剪模型 blob。
OLLAMA_ORIGINS: 允许的源列表,使用逗号分隔。
OLLAMA_SCHED_SPREAD: 始终跨所有 GPU 调度模型。
OLLAMA_TMPDIR: 临时文件的位置。
OLLAMA_FLASH_ATTENTION: 启用 Flash Attention。
OLLAMA_LLM_LIBRARY: 设置 LLM 库以绕过自动检测。

2.安装DeepSeek模型。

DeepSeek模型参数有:“1.5b”、“7b”、“8b”、“14b”、“32b”、“70b” 和 “671b”
b代表的是“billion(十亿)”,如8b指的是8个十亿个参数。以此类推其他参数。
在这里插入图片描述

2.1在Ollama命令行中按照。

博主本机电脑按照了两个模型,一个是8b一个14b。具体安装那个模型需要根据自己电脑性能。

初步参考

1.5B 参数模型
GPU: 1-2NVIDIA RTX 3090 或等效显卡
内存: 8-16 GB RAM
存储: SSD,最好 100 GB 可用空间
7B 参数模型
GPU: 2-4NVIDIA RTX 3090RTX A6000,或相当于 16GB VRAM 的其他显卡
内存: 8-16 GB RAM
存储: SSD,最好 400 GB 可用空间
8B 参数模型
GPU: 2-4NVIDIA A100RTX 3090
内存: 32 GB RAM
存储: SSD,最好 400 GB 可用空间(博主安装)
14B 参数模型
GPU: 4-8NVIDIA A100RTX 3090
内存: 32 GB RAM
存储: SSD,至少 500 GB 可用空间(博主安装)
32B 参数模型
GPU: 8NVIDIA A100 或更高规格显卡
内存: 64 GB RAM
存储: SSD,至少 1 TB 可用空间(预估,博主尚未安装)
70B 参数模型
GPU: 8-16NVIDIA A100H100
内存: 128 GB RAM 或更多
存储: SSD,至少 2 TB 可用空间(预估,博主尚未安装)
671B 参数模型
GPU: 多个 NVIDIA H100TPU 集群
内存: 512 GB RAM 或更多
存储: 大容量 SSD 或分布式存储,至少 5 TB 或更多(预估,博主尚未安装)
2.2.1开始安装DeepSeek模型。

继续Ollama窗口输入命令:Ollama DeepSeek-r1:14b
在这里插入图片描述
此过程时间较长,8b模型4.9G。14b模型9G。博主一不小心两个都装了。
在这里插入图片描述
好了,以上都安装成功了。接下来就可以用了。
模型
使用命令:

// 启动命令  deepseek-r1启动的模型名称  14b上述安装的14b模型
ollama run deepseek-r1:14b
// 结束命令  可以直接关闭窗口
/bye

在这里插入图片描述
每次用命令行好像也不太方便。博主找了个图形化界面操作的。

3.安装Cherry Studio工具。下载地址:https://cherrystudio.com.cn/

下载安装完成后,配置使用本地化模型。

3.1点击左下角设置按钮,进入模型服务页面。找到ollama,有个管理。在管理里面选择本地模型使用。

Cherry Studio

3.2模型服务里面"硅基流动"获取API秘钥。点击下面蓝色字体(点击这里获取秘钥),跳转页面。创建API秘钥

设置硅基流动
输入完成。就可以开始使用了。
开始用起来

注意:默认助手,每次新建一个需要重新第3步骤,选择模型。在知识库里面,可以来投喂资料训练本地化模型。

公众号:sy157715743


### 本地部署 DeepSeek 构建知识库 #### 安装 Ollama 为了启动 DeepSeek 的运行环境,需先安装 Ollama。此操作确保了后续组件能够顺利运作并支持整个系统的正常工作[^1]。 ```bash pip install ollama ``` #### 配置 DeepSeek 和集成 Cherry-Studio 完成 Ollama 的安装之后,按照官方提供的说明文档配置 DeepSeek。对于希望简化管理流程的用户来说,可以通过图形界面工具 Cherry-Studio 来实现更便捷的操作体验。 #### 设置本地知识库 针对想要创建个性化知识存储的需求,可以参照具体指南来设置本地的知识库结构。这一步骤涉及到了解如何有效地组织和索引资料以便于后期查询使用[^2]。 #### 准备必要的嵌入模型 在此之前,请务必预先下载并安装适合中文语境下的嵌入模型 shaw/dmeta-embedding-zh 或者 nomic-embed-text。这些预训练好的模型有助于提高文本相似度计算效率以及准确性[^4]。 ```bash # 假设以 dmeta-embedding-zh 为例 git clone https://github.com/shaw/dmeta-embedding-zh.git cd dmeta-embedding-zh pip install . ``` #### 数据导入与处理 当一切准备就绪后,就可以开始上传所需文件至系统中,并对其进行相应的转换处理——即将原始文档转化为机器可读的形式(即向量)。完成后便可通过新建线程的方式发起对话请求,从而获取有关该份材料的信息摘要或是特定问题的回答。 ```python from deepseek import KnowledgeBaseManager manager = KnowledgeBaseManager() manager.upload_documents('path/to/your/documents') manager.save_and_embed() # 向量化处理 thread_id = manager.new_thread() response = manager.query(thread_id, "请问这份报告的主要结论是什么?") print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值