DeepSpeed微调模型

DeepSpeed 确实可以用于微调大型模型,尤其是在资源有限的情况下进行高效分布式训练和微调。严格来说,DeepSpeed 本身不是一种微调方法,而是一个优化和加速框架,它为微调提供了许多工具和技术支持,使得微调大型模型更高效。以下是 DeepSpeed 支持的相关微调技术:

1. ZeRO 优化 (ZeRO Optimization)

  • 描述:通过分布式处理模型的参数、梯度和优化器状态,显著减少每个设备上的内存需求。
  • 优点:允许在有限内存的 GPU 上微调超大规模模型。
  • 适用场景:资源有限的场景,特别是想微调大模型(如 70B 或 175B 参数模型)时。

2. DeepSpeed Inference 支持量化 (Quantization)

  • 描述:支持对模型进行 8-bit 或 16-bit 的量化,从而减少内存使用量和推理时间。
  • 优点:在推理阶段降低资源消耗,同时保持较高的性能。
  • 适用场景:需要在低资源设备上部署模型,或在微调完成后进行高效推理的场景。

3. DeepSpeed 训练加速 (Training Acceleration)

  • 描述:通过混合精度训练(Mixed Precision Training)和其他优化技术,加速模型训练和微调。
  • 优点
### 使用 Deepspeed 对 Qwen (千问) 模型进行微调 #### 下载模型文件 为了开始微调过程,首先需要获取目标模型。对于较小版本的Qwen-1.8B聊天模型,可以通过如下命令克隆仓库: ```bash git clone https://modelscope.cn/qwen/Qwen-1_8B-Chat.git ``` 这一步骤同样适用于其他大小的模型,不过较大的模型可能需要从ModelScope或Hugging Face平台下载[^1]。 #### 准备环境配置 确保安装了必要的依赖库以及设置了合适的计算资源。特别是当采用Deepspeed加速训练时,推荐使用支持CUDA的GPU设备来提升效率。 #### 配置Deepspeed参数 创建一个JSON格式的Deepspeed配置文件`ds_config.json`用于定义优化器设置、混合精度策略以及其他重要的超参数调整选项。下面是一个基本的例子: ```json { "train_batch_size": 4, "gradient_accumulation_steps": 2, "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 16, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 5e-5, "betas": [ 0.9, 0.999 ], "eps": 1e-8, "weight_decay": 3e-7 } } } ``` 此配置启用了FP16半精度浮点运算以减少显存占用并加快收敛速度;同时也指定了AdamW作为默认优化算法及其学习率和其他参数[^3]。 #### 编写微调脚本 编写Python脚本来加载预训练好的Qwen模型,并应用上述提到的Deepspeed配置来进行微调操作。这里提供了一个简化版的代码框架供参考: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import deepspeed import torch tokenizer = AutoTokenizer.from_pretrained("path/to/model") model = AutoModelForCausalLM.from_pretrained("path/to/model") training_args = TrainingArguments( output_dir="./results", # 输出目录 per_device_train_batch_size=4, # 训练批次大小 ) # 初始化DeepSpeed引擎对象 engine, optimizer, _, _ = deepspeed.initialize( model=model, config="ds_config.json" ) for epoch in range(num_epochs): for batch in dataloader: inputs = tokenizer(batch['text'], return_tensors='pt').to('cuda') outputs = engine(**inputs) loss = outputs.loss engine.backward(loss) engine.step() ``` 这段代码展示了如何利用Transformers库中的API加载指定路径下的Qwen模型实例,并通过`deepspeed.initialize()`函数将其转换成由Deepspeed管理的对象以便后续执行分布式训练逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MonkeyKing.sun

对你有帮助的话,可以打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值