视觉SLAM之旅 三

李群与李代数

群的定义:
群(Group)是一种集合加上一种运算的代数结构
若记集合为A,运算为·,那么当运算满足以下性质时,称(A,·)成群

  1. 封闭性: ∀ a 1 , a 2 ∈ A , a 1 ⋅ a 2 ∈ A \forall a_1,a_2\in A,\quad a_1·a_2\in A a1,a2A,a1a2A
  2. 结合律: ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ⋅ a 2 ) ⋅ a 3 = a 1 ⋅ ( a 2 ⋅ a 3 ) \forall a_1,a_2,a_3\in A,\quad(a_1·a_2)·a_3=a_1·(a_2·a_3) a1,a2,a3A,(a1a2)a3=a1(a2a3)
  3. 幺元: ∃ a o ∈ A , s . t . ∀ a ∈ A a ⋅ a 0 = a 0 ⋅ a = a \exists a_o\in A,\quad s.t. \quad \forall a\in A\quad a·a_0=a_0·a=a aoA,s.t.aAaa0=a0a=a
  4. 逆: ∀ a ∈ A , ∃ a − 1 ∈ A , s . t . a ⋅ a − 1 = a 0 \forall a \in A,\quad \exists a^{-1} \in A,\quad s.t. \quad a·a^{-1}=a_0 aA,a1A,s.t.aa1=a0

容易验证:
旋转矩阵集合与矩阵乘法成群
变换矩阵集合与矩阵乘法成群

李群与李代数

李群
具有连续(光滑)性质的群,既是群也是流形
李代数
与李群对应的一种结构,位于向量空间
每个李群都有与之对应的李代数,李代数描述了李群单位元附近的正切空间的性质
事实上是李群单位元处的正切空间

指数映射与对数映射

高翔大佬14讲中的结论
在这里插入图片描述

李代数求导与扰动模型

Sophus库的使用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值