提示工程中的 Zero-shot、One-shot、Multi-shot:它们到底是什么?进阶必看!

引言

在提示工程(Prompt Engineering)中,Zero-shot、One-shot 和 Multi-shot 是三种常见的提示方式,它们决定了大模型的任务理解和输出质量。本篇文章将通过实例、对比分析和案例研究,帮助读者全面理解这三种提示方式的优缺点及其适用场景。

在这里插入图片描述


1. 概念与实例

以下用一句话简单说明每种提示方法的特点:

  • Zero-shot:直接给模型任务说明而不提供任何示例。

    示例:生成一篇关于气候变化的文章。

  • One-shot:提供一个示例帮助模型理解任务格式。

    示例:生成一篇关于气候变化的文章。示例:气候变化正在加速全球变暖,需要更多国际合作。

  • Multi-shot:提供多个示例以更全面地指导模型输出。

    示例:生成一篇关于气候变化的文章。示例1:气候变化正在加速全球变暖,需要更多国际合作。示例2:温室气体排放增加了极端天气事件的频率,我们应该重视可持续发展。


2. Zero-shot、One-shot 和 Multi-shot 对比

以下表格总结了三种提示方法的优缺点及其适用场景:

提示方式优点缺点适用场景
Zero-shot简单直接,无需准备示例;适用于模型训练数据覆盖较广的任务。模型可能误解任务,输出质量较低,尤其在格式化任务中表现不佳。快速任务,如翻译、简单分类等。
One-shot为模型提供了清晰任务方向,提高输出质量;适用于需要特定格式的场景。无法涵盖多样化需求,可能导致模型忽略边界情况。格式化任务,如摘要、邮件生成等。
Multi-shot提供多样化的示例,可处理复杂任务,提高模型输出的准确性和一致性。准备示例耗时较多,提示长度可能超限,导致计算成本增加。复杂任务,如情感分析、复杂分类等。

3. 案例分析

我们通过一个具体的案例来对比 Zero-shot 和 Multi-shot 提示在客户反馈分析中的效果。以下表格展示了两种方法的用户提示及大模型(LLM)的响应对比:

角色Zero-shot(无示例)Multi-shot(有示例)
用户提示分析这条客户反馈并分类问题。请使用以下类别:UI/UX、性能、功能需求、集成、定价和其他。同时评估反馈的情感(积极/中性/消极)和优先级(高/中/低)。

以下是反馈内容:{{FEEDBACK}}
我们的客服团队收到大量无结构反馈。您的任务是分析反馈并为我们的产品和工程团队分类问题。请使用以下类别:UI/UX、性能、功能需求、集成、定价和其他。同时评估反馈的情感(积极/中性/消极)和优先级(高/中/低)。以下是一个示例:


输入:新的仪表盘真是一团糟!加载速度慢得要命,而且我找不到导出按钮。快点修复!
类别:UI/UX、性能
情感:消极
优先级:高


现在,请分析这条反馈:{{FEEDBACK}}
LLM 的响应以下是对客户反馈的分析:

问题:UI/UX
情感:消极
优先级:高
客户对新的仪表盘设计表示不满,认为界面杂乱且加载缓慢。他们特别提到缺少“导出”按钮,这可能是一个关键功能。该问题需要作为高优先级进行解决。

问题:集成
情感:积极
优先级:中
客户对现有的 Salesforce 集成功能感到满意,但希望也能支持 Hubspot。这是一个可以考虑在未来产品更新中加入的功能需求。

问题:定价
情感:消极
优先级:高
客户认为定价不合理,特别是对于基础功能。他们威胁要转向竞争对手,因此这是一个需要审查的高优先级问题。

问题:性能
情感:消极
优先级:高
客户在使用移动应用上传大文件时遇到严重问题,大文件上传时会崩溃。这是一个显著问题,影响客户有效使用产品,需要作为高优先级进行解决。

问题:UI/UX
情感:积极
优先级:低
客户总体对产品感到满意,特别提到直观的用户界面和出色的客户支持。这是一个不需要立即采取行动的积极反馈。
以下是对客户反馈的分析:

1. 新的仪表盘真是一团糟!加载速度慢得要命,而且我找不到导出按钮。快点修复!
类别:UI/UX、性能
情感:消极
优先级:高

2. 我很喜欢 Salesforce 的集成功能!不过,如果能支持 Hubspot 就更好了。
类别:集成、功能需求
情感:积极
优先级:中

3. 你们的定价太离谱了!基础功能竟然要 99 美元/月?我要转向竞争对手了。
类别:定价
情感:消极
优先级:高

4. 移动应用在上传大文件(>50MB)时总是崩溃。这对我们的现场代理来说至关重要。
类别:性能
情感:消极
优先级:高

5. 总的来说,我对产品感到满意。用户界面很直观,客户支持也很棒。加油!
类别:UI/UX、其他(客户支持)
情感:积极
优先级:低

分析
Zero-shot 场景中,大模型的响应虽然给出了反馈分类和情感/优先级,但存在以下问题:

  1. 分类不够完整:尽管模型的文字分析暗示某些反馈属于多个类别,但它并未明确列出多个选项。
  2. 冗长的解释:模型给出了较长的描述性解释,而这可能并不是我们所需要的。

相较之下,在 Multi-shot 提示中,通过添加具体的示例,模型能够:

  • 明确每条反馈的多类别分类,例如一条反馈可能同时属于 UI/UX性能
  • 避免冗长的解释,直接以清晰的列表形式呈现每条反馈的分类、情感和优先级,从而更符合实际需求。

为了获得最佳效果,建议在编写 Multi-shot 提示时遵循以下原则:

  1. 相关性:示例需要与实际用例紧密相关。
  2. 多样性:示例应覆盖边界情况和潜在挑战,避免模型学习到意外模式。
  3. 清晰性:将示例用 <example> 标签(或 <examples> 标签嵌套)包裹,提供明确的结构化提示。

4. 总结与展望

通过本文的分析,我们了解了 Zero-shot、One-shot 和 Multi-shot 提示的概念及其适用场景,重点通过案例展示了 Multi-shot 提示的优势。

未来方向
提示工程还有许多技巧可以帮助提高任务性能,比如:

  • 链式提示(Chain of Thought):引导模型逐步解决复杂任务。
  • 偏好引导(Preference Prompting):通过提示框定模型输出风格或范围。
  • 动态提示(Dynamic Prompting):结合上下文动态生成提示内容。

更多内容将在公众号持续更新,欢迎关注学习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

surfirst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值