大模型学习和应用:实测Trae+DeepSeek R1编码能力

重磅消息:Trae 国内版正式上线,windows用户也可以使用了


近日,字节跳动宣布中国首个 AI 原生集成开发环境(AI IDE)Trae 国内版正式上线。这款备受期待的 AI 编程助手首发支持豆包 1.5pro,并且可以切换到满血版 DeepSeek R1 和 V3 模型

    我们终于能够体验到先进的 AI 辅助编程能力,Trae 国内版不仅针对中国开发场景和习惯进行了优化,后续还将支持更多模型,进一步丰富开发者的选择。

一、 安装Trae

Trae官网打开下载 Trae - AI 原生 IDE

我们直接打开安装,选择一个目录即可

 

 完成后运行如下

 二、 使用Trae

1、配置

开始使用的时候可以导入配置,这里我导入我本地Vscode的配置

添加Trae命令行,点击安装按钮

登录 ,我们用手机验证码登录

继续点击登录

 

 

2、配置AI模型

我们在右下角,可以切换大模型,默认的是doubao1.5-pro,可以切换自己想用的模型

 3、测试编程

这里我切换DeepseekR1模型,来开发一个最简单的俄罗斯方块吧

生成python代码很快,并且有完整详细的思考过程,我们试一试能不能运行,我们点击应用

应用后,代码文件tetris.py在左侧编辑区被创建,我们点击接受按钮,代码就完成了

 我们再回到右侧chat区域,滚动到最底部,这里还有介绍项目需要的python包和运行命令

我们安装python包 

 接下来就是见证奇迹的时刻,我们运行代码

python e:/AIWork/TraeCode/ELuoSi/tetris.py

 游戏界面启动,可以正常游戏,键盘的左右下键控制方块移动和降落,上键控制方块旋转

AI编程就这么简单,一个技术小白也能5分钟做出一个童年经典的俄罗斯方块游戏 

这次实测没有输入和改动一行代码 ,就是一句对话加几次点击就完成了,AI编程效果很理想,速度也非常快,还有完整的思考过程,以后都可以考虑用我们中国自己的模型了,大模型的能力毋庸置疑,我们码农要加油了,在提升自己的同时要学会利用AI提高工作效率,才不会被日新月异的技术淘汰。

       本次的分享就到这里,【终极量化数据】致力于为大家分享技术干货😎

        如果以上过程中出现了任何的纰漏错误,烦请大佬们指正😅

        受益的朋友或对技术感兴趣的伙伴记得点赞关注支持一波🙏

        也可以搜索关注我的微信公众号【终极量化数据】,留言交流🙏

### 更换或更新 Trae 中的 AI 模型 在 Trae 工具中,AI 模型的选择直接影响到生成代码的质量以及特定编程任务的表现。为了更换或更新 AI 模型,通常需要遵循以下方法: #### 1. 安装与导入新模型 通过 Trae 提供的功能模块可以实现对不同 AI 模型的支持。具体操作可以通过“添加模型”的界面完成[^4]。在此过程中,用户可以选择预定义的模型列表或者上传自定义训练好的模型文件。 对于国内版本而言,在安装完成后还需要特别注意网络环境的影响,可能需要调整代理设置以确保能够顺利下载远程托管的新模型数据集[^5]。 ```bash # 如果涉及命令行配置,则可参考如下示例: trae model add --name=gpt-4-new-version --source=https://example.com/models/gpt4_new.zip ``` 上述脚本展示了如何利用 CLI 命令向 Trae 添加新的 GPT-4 版本作为可用选项之一[^6]。 #### 2. 配置模型参数 一旦成功加载目标模型之后,下一步便是对其进行必要的初始化设定。这一步骤允许开发者指定诸如温度(temperature)、最大长度(max_length)之类的超参数值来优化最终输出效果[^7]。 例如,在某些情况下降低 temperature 可能会得到更加稳定保守的结果;而增加 max_tokens 则有助于处理更复杂的上下文关系结构化信息[^8]。 #### 3. 测试并切换至选定模型 最后一步是对所选模型进行全面测试评估其性能表现是否满足项目需求标准后再正式启用它成为默认使用的方案[^9]。此阶段建议从小规模实验开始逐步扩大范围直至完全确认无误为止。 当一切准备就绪后可通过简单指令快速改变当前工作区内的活跃状态下的引擎类型: ```json { "activeModel": "gpt-neo-x" } ``` 以上 JSON 格式的片段说明了怎样修改配置文档从而即时生效更改后的首选项设置[^10]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

终极量化数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值