dl
文章平均质量分 63
Synioe
这个作者很懒,什么都没留下…
展开
-
ubuntu+anaconda环境下opencv+contrib源码编译:刚脱坑,写一篇实实在在的编译教程
深度学习计算机视觉离不开的opencv库,从源码编译安装是最为完整和实用的,对于opencv库要求很高的情况下建议是从源码编译安装,博主最近尝试了一次在anaconda环境下编译opencv,也是先参考了博客上很多人的帖子,没有细数,这几天看过的帖子至少也有几十篇,真正实用的少之又少,很多是千篇一律或者就是直接复制别人的内容,这也让很多人走了很多弯路,这里把这个亲测通过的教程写出来,以供自己以后参...原创 2018-09-22 18:35:15 · 2917 阅读 · 4 评论 -
selective search algorithms (选择性搜索算法)原理、C++/Python代码
Object Detection vs. Object Recognition目标识别算法识别图像中存在哪些对象。它将整个图像作为输入,并输出该图像中存在的对象的类标签和类概率。例如,类标签可以是“狗”,相关的类概率可以是97%。另一方面,目标检测算法不仅得到图像中存在哪些对象,还输出边界框(x,y,宽度,高度)以指示图像内对象的位置。所有目标检测算法的核心是目标识别算法。假设我们训练...翻译 2019-01-02 15:58:09 · 1327 阅读 · 0 评论 -
非极大值抑制NMS算法
非极大值抑制NMS算法nms算法在目标检测算法中应用普遍,其主要的作用是去除检测到的多个目标框,进而确定最优的目标框。原理:核心思想是对多个目标框进的置信度进行排序,选择最优置信度的框,然后设置一个阈值,当其他框与最优置信度框重合程度超过阈值时将其他框舍去,再在剩下的框中迭代重复该操作。python代码import numpy as npdets = np.array([ ...原创 2018-11-29 14:45:50 · 266 阅读 · 0 评论 -
inceptionv3 /v4迁移学习图像分类
研究一个图像分类的任务,现在的问题是对6类图像数据做分类任务,数据的特征是每一类都只有非常少的数据,并且存在类别不平均,在这种情况下我们的实验结果存在准确率的问题,对于少量数据,采用端到端从头开始训练的方法,模型学习到的特征很少,泛化能力不够,采用从ImageNet数据集训练得到的结果,我们可以采用预训练权重初始化特定的深度网络,如这里的Inception网路,采用slim轻量库构建模型,模型在三...原创 2018-11-18 14:58:42 · 2483 阅读 · 1 评论 -
keras数据生成器--数据增强
原理很简单都在代码中from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_imgdatagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_...原创 2018-11-17 13:55:41 · 1146 阅读 · 0 评论 -
Resnet到Inception网络模型结构及代码分析
关于inceptionv1-v4的论文以及细节在这篇博客中已经展示的非常的清楚,这里谈谈思考。inception网络的开创新的优势在于其将神经网络的优化精髓理解的足够透彻,resnet的大神已经证明了网络的深度通过残差网络可以无限的堆叠下去,然后深度到达一定层数后再堆叠下去的作用就很有限了,inception的大神清楚的理解到网络的深度达到一定以后,如果还要想在数据流的角度继续提高模型的泛...原创 2018-11-19 21:50:14 · 1818 阅读 · 1 评论 -
Nature论文:Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks
Nature正刊的一篇图像分类应用--传送门利用inceptionv3做皮肤癌图像分类的工作,采集的数万张的图片数据,一百多类的皮肤病分类任务,ImageNet数据集预训练的数据迁移学习方法应用到多类皮肤病分类领域,9折交叉验证方法验证分类效果的可行性,并将迁移学习分类结果与多名专家分类的结果进行比较,得到的结论是机器学习的方法可以比拟专家分类。通篇看完这篇高IF的文献,用的方法都是熟...原创 2018-11-21 22:48:34 · 1299 阅读 · 0 评论 -
opencv+deep-learning实现人脸识别
早在2017年8月,OpenCV 3.3正式发布,带来了高度改进的“深度神经网络”(dnn)模块。该模块支持许多深度学习框架,包括Caffe,TensorFlow和Torch / PyTorch。dnn模块的主要贡献者Aleksandr Rybnikov已经投入了大量的工作来使这个模块成为可能。 自从OpenCV 3.3发布以来,有一些深度学习的OpenCV教程。然后在opencv中包...原创 2018-11-14 23:19:15 · 662 阅读 · 0 评论 -
YOLOv3深度理解
YOLO系列算法,是目前目标检测算法中速度最快的一种方法。尽管在目标检测的准确率上不是最为准确的检测算法,但是考虑到工业上的实时目标检测应用,YOLO目前仍具有不可替代的优势。换句话说,YOLO将其牺牲的一点准确度极大的弥补在实时性上,在工业目标检测领域,可以完成项目实际的商业落地。YOLO系列算法的论文:yolov1yolov2(yolo9000)yolov3这里仅深度理解y...翻译 2018-11-15 21:20:44 · 10681 阅读 · 1 评论 -
keras+CNN图像分类
我们的深度学习数据集包括1,191张口袋妖怪图像,(存在于口袋妖怪世界中的动物般的生物,流行的电视节目,视频游戏和交易卡系列)。我们的目标是使用Keras和深度学习训练卷积神经网络,以识别和分类这些神奇宝贝。我们将认识到的口袋妖怪包括:Bulbasaur(234图像)Charmander(238图像)Squirtle(223图像)皮卡丘(234图像)Mewtwo(239图像)...原创 2018-11-13 11:22:31 · 6163 阅读 · 1 评论 -
tf.nn.softman_cross_entropy_with_logits及几种交叉熵计算
https://www.jianshu.com/p/95d0dd92a88a 就看例子就完事了 tf.nn.softmaximport tensorflow as tfimport numpy as npsess=tf.Session()#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)logits = np.arra...转载 2018-11-10 19:58:42 · 246 阅读 · 0 评论 -
基于keras实现多标签分类(multi-label classification)
首先讨论多标签分类数据集(以及如何快速构建自己的数据集)。之后简要讨论SmallerVGGNet,我们将实现的Keras神经网络架构,并用于多标签分类。然后我们将实施SmallerVGGNet并使用我们的多标签分类数据集对其进行训练。最后,我们将通过在示例图像上测试我们的网络,并讨论何时适合多标签分类,包括需要注意的一些注意事项。multi-label classificati...原创 2018-11-09 22:51:33 · 6816 阅读 · 1 评论 -
Mask-rcnn做检测应用
这几天在接触mask-rcnn的原理和检测数据,包括数据集的制作和标注,在一块1080ti上训练模型,到目前位置还有问题没有解决,在matterport/mask-rcnn的github仓库的issues下找解决方案,没有找到能够解决我的问题的回答。我的问题的在balloon案例上做修改,对标记多个class的数据进行识别和实例分割,balloon是对一个class做检测,我也尝试了只对我的一...原创 2018-11-06 21:21:21 · 1888 阅读 · 3 评论 -
2018年机器学习深度外文50篇
medium官方比较了从2018年1月到12月,22000篇机器学习外文博客,选出了最佳50篇。摘录如下:Dec 29, 2018Between Jan~Dec 2018, we’ve compared nearly 22,000 Machine Learning articles to pick the Top 50 that can improve your data science ...原创 2019-01-02 16:12:38 · 2554 阅读 · 0 评论