就看例子就完事了
tf.nn.softmax
import tensorflow as tf
import numpy as np
sess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],
[3, 5, 2],
[6, 1, 3],
[8, 2, 0],
[3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0]], dtype=np.float32)
# 公式计算,-np.log(y*softmax_out)
# y=n*c,softmax_out是n*c,相当于将每个样本softmax的c个特征中最大的取出来,再取负就是求最小
softmax_out=tf.nn.softmax(logits)
cross_entropy1 = -tf.reduce_sum(labels * tf.log(softmax_out), axis=1) #对应元素相乘,非矩阵乘法
print sess.run(cross_entropy1)
#使用一维label计算,对每个样本取第k个元素出来,k代表实际类别
out_v = sess.run(out)
class_v = sess.run(classes)
cross_entropy1_label = -tf.log(out_v[range(len(logits)),class_v])
print sess.run(cross_entropy1_label)
#---输出
array([ 0.00917445, 0.16984604, 0.05498521, 0.00281022, 0.05498521], dtype=float32)
tf.nn.softmax_cross_entropy_with_logits与tf.nn.sparse_softmax_cross_entropy_with_logits
import tensorflow as tf
sess=tf.Session()
#logits代表wx+b的输出,并没有进行softmax(因为softmax后是一个和为1的概率)
logits = np.array([[1, 2, 7],
[3, 5, 2],
[6, 1, 3],
[8, 2, 0],
[3, 6, 1]], dtype=np.float32)
#labels是[2,1,0,0,1]的ont-hot编码形式
labels = np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0]], dtype=np.float32)
cross_entropy2 = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
sess.run(cross_entropy2)
classes = tf.argmax(labels, axis=1) #array([2, 1, 0, 0, 1])
cross_entropy3 = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=classes)
sess.run(cross_entropy2)
#---cross_entropy2 输出
array([ 0.00917445, 0.16984604, 0.05498521, 0.00281022, 0.05498521], dtype=float32)
A 1-D `Tensor` of length `batch_size` of the same type as `logits` with the
softmax cross entropy loss.
#---cross_entropy3 输出
array([ 0.00917445, 0.16984604, 0.05498521, 0.00281022, 0.05498521], dtype=float32)
1.tf.nn.softmax_cross_entropy_with_logits与tf.nn.sparse_softmax_cross_entropy_with_logits
输出结果相同,,后者的输入label shape=[batch_size],dtype=int32/int64,range=[0, number_classes-1];前者的label shape=[batch_size, number_classes], dtype=[float32/64]
2.tf.losses.softmax_cross_entropy和tf.losses.sparse_softmax_cross_entropy
都是用于计算不同样本的loss,
tf.losses.softmax_cross_entropy默认weight=1,等价于tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)
weight为标量数字时,等价于w * tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits)
weights为向量时,计算出的每个Loss需乘上对应的样本权重再平均。
3.tf.losses.sparse_softmax_cross_entropy
等价于tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits).