ML学习笔记b站吴恩达(4-6/19)

本文详细介绍了吴恩达机器学习系列课程中的内容,包括多元线性回归中的梯度下降法、特征缩放技巧、学习率调整、多项式回归、正规方程的应用以及正则化处理矩阵不可逆问题。同时讨论了Logistic回归算法、代价函数和高级优化技术。
摘要由CSDN通过智能技术生成

课程名称:[中英字幕]吴恩达机器学习系列课程
课程内容:Machine Learning
课程网址:https://www.bilibili.com/video/BV164411b7dx/?p=18&spm_id_from=pageDriver&vd_source=ce1ba3c38b9d663ebfa5fce9f867c7e3
课程进度:4-6

4-1 多功能
Subscript 写在下面的,下标
Denote 表示
Lowercase 小写
在这里插入图片描述

n特征量的数量
上标superscript表示第几个样本,上标+下标表示第几个样本的第几个特征值
Multivariate linear regression 多元线性回归
在这里插入图片描述

X是样本,theta是参数

4-2 多元梯度下降法
Gradient descent 梯度下降法
在这里插入图片描述在这里插入图片描述

多特征量的时候,更新参数就要和特征量的取值相关了,其实单特征量也一样只是x(i)0取值默认是1了

4-3 多元梯度下降法演练1-特征缩放
在这里插入图片描述

如果各个特征量的取值范围差异很大,那等值线图就会很瘦很高,梯度下降也可能会振荡
在这里插入图片描述

比较合适的取值范围如上图,太大不好,太小也不好
Mean normalization均值归一化
在这里插入图片描述

V1是训练集中特征x1的平均值
S1是该特征值的范围,最大值减去最小值,也就是标准差

4-4 多元梯度下降法2-学习率
x-axis x轴 horizontal axis
converge(v.)会聚,集中,十分相似,收敛
在这里插入图片描述在这里插入图片描述

如果代价函数逐渐上升,那通常是学习率取得过大了
如果代价函数反复上升下降,那通常也可能是学习率取大了
如果学习率太小了,那代价函数收敛会过于缓慢甚至不收敛
在这里插入图片描述

4-5 特征和多项式回归
Polynomial regression多项式回归
在这里插入图片描述

更换特征可能会得到更好的模型
在这里插入图片描述

4-6 正规方程(区别于迭代方程的直接解法)
Concretely具体地说,具体地
Intuition直觉,直觉力
在这里插入图片描述

解析式地找到最优的theta
Design matrix设计矩阵
在这里插入图片描述

这里的第二个矩阵x是不是弄错了上标和下标?
X transpose X的转置
在这里插入图片描述

使用正规方程法不需要特征缩放
在这里插入图片描述

对线性回归问题,正规方程法相对于梯度下降法是一个不错的选择

4-7 正规方程在矩阵不可逆情况下的解决方法
Normal equation正规方程
Non-invertibility不可逆性
Singular matrix奇异矩阵 degenerate matrix退化矩阵 这种矩阵不可逆
Octave中的pinv和inv不同,一个是伪逆pesudo-inverse,一个是逆
在这里插入图片描述

Regularization正则化
在这里插入图片描述

出现矩阵不可逆情况通常有两种原因,一是因为特征间的关系影响到了矩阵,比如重复的有线性关系的特征量,这种情况需要删除多余的,二是因为样本数相对于特征数太少,特征量太多了,这种情况需要删除一些特征或者进行正则化。
虽然有时候确实会有矩阵不可逆的情况,但是使用pinv也能得到正确结果

4-8 导师的编程小技巧

5-1 基本操作
Octave 不等于 ~=
Disp(a) 打印显示a的内容
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
Rand生成的是0和1之间的随机的数
在这里插入图片描述

Randn生成的是服从高斯分布的数,均值为0,标准差或者说方差为1
在这里插入图片描述

Hist生成直方图
上图标准差为根号10,方差为10,符合高斯分布
在这里插入图片描述

Eye表示生成单位矩阵
Help命令
Help eye help rand help help 摁q退出
Sophisticated复杂的

5-2移动数据
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

Who 显示当前的所有变量 whos 显示更详细的各个变量及其信息
在这里插入图片描述

Clear 删除变量
在这里插入图片描述在这里插入图片描述
Save 把变量存到文件中
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

5-3 计算数据
在这里插入图片描述

点乘和叉乘运算符有区别如上
这个点号通常表示元素的运算
在这里插入图片描述在这里插入图片描述在这里插入图片描述

Abs求non-negative values
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

求转置
在这里插入图片描述

Max(矩阵A)会获得每一列的最大值
在这里插入图片描述

Find会返回满足条件的元素的索引
幻方magic square的行列对角线的和都是相等的
在这里插入图片描述在这里插入图片描述在这里插入图片描述

Sum求和 prod求乘积 floor向下取整 ceil向上取整
在这里插入图片描述

Rand(3)生成随机3*3矩阵
在这里插入图片描述

上图为取每一列的最大值,1意味着从A的第一维度去取值
在这里插入图片描述在这里插入图片描述

取矩阵Adequate最大值的两种方法,一是max(max(A)),二是把A变成列向量再取最大值
在这里插入图片描述

上图为取每一列的和,取每一行的和
在这里插入图片描述在这里插入图片描述

Flipud垂直翻转矩阵
在这里插入图片描述

5-4 数据绘制
Plot图
Generate生成
Visualize使可视化
在这里插入图片描述在这里插入图片描述

5-5 控制语句:for,while,if.语句
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
Exit或者quit 退出octave
在这里插入图片描述在这里插入图片描述
要使用自己编写的函数,需要事先准备.m文件,cd进入到对应文件夹,或者是addpath添加好对应文件夹路径,然后才可以使用这个函数
Octave可以定义一个函数能够返回多个值
在这里插入图片描述在这里插入图片描述

设计矩阵为[1 1;1 2;1 3],第一列是x0的值,第二列是训练样本,对应的y值矩阵为[1;2;3],给定theta,求代价函数。实际上当theta为[0;1]时就是斜率为一的直线,theta为[0;0]时求代价函数即可。
Sanity理智,明智,精神健全,通情达理,神志正常

5-6 矢量
Routine常规,例行程序
Vectorized向量化的
Inner product内积
在这里插入图片描述

C++中实现如下图
在这里插入图片描述

Sophisticated复杂的
Simultaneously同时地
Compress压缩,压紧,浓缩
Subtract减,减去 注意不是substract,没有多的s
Summation求和
Real number实数
在这里插入图片描述

上图是把整个计算过程向量化的过程(矢量化地实现线性回归linear regression)
Computation计算式
当特征量非常多时,矢量化实现往往比循环实现运算速度更快
Vectorized implementation向量化实现方式

6-1 分类
Logistic regression logistic回归算法
分类问题
Arbitrary任意的,武断的,专横的
Convey输送,传达,表达
Two class problem二分类问题
Binary classification problem二元分类问题
Multi-class多分类
在这里插入图片描述

Threshold阈值
Instance实例,例子,事例
在这里插入图片描述

Logistic regression是一种分类算法classification algorithm

6-2 假设陈述
Hypothesis representation
我们希望分类器classifier的输出值在0和1之间
Sigmoid function和logistic function基本算是同义词synonym
It asymptotes at zero趋向0 approaches 1 接近1
Horizontal axis横轴
在这里插入图片描述在这里插入图片描述

6-3 决策界限
Decision boundary
在这里插入图片描述

如下Decision boundary把平面分成了不同部分
在这里插入图片描述

decision boundary是假设函数的property而不是数据集data set的property
curve曲线
在这里插入图片描述

Training set训练集
训练集用来拟合模型参数,而一旦参数确定,decision boundary就确定了
Logistic regression可以表示一些的hypothesis function
Automatically自动地

6-4 代价函数
Cost function
在这里插入图片描述

Non-convex非凸函数
Convex凸函数 bowl shaped
在这里插入图片描述

Desirable可取的,值得拥有的
下面两图是一种可取的cost function
在这里插入图片描述在这里插入图片描述

6-5 简化代价函数与梯度下降
Logistic regression
Compress压缩,压紧,浓缩
在这里插入图片描述

上图把两种情况的代价函数合并为单一写法
在这里插入图片描述

这个算法是从统计学的极大似然估计法得来的
在这里插入图片描述

h(x)就是表示给定x和theta时y=1的概率
在这里插入图片描述

线性回归的梯度下降代价函数和logistic regression的梯度下降代价函数写法相同,但是它们的假设函数是不同的

6-6 高级优化
Advanced optimization algorithm
Derivative term导数项
在这里插入图片描述

BFGS共轭梯度法
Manually手动地
Line search algorithm线搜索算法
Entirely完全,完整地,全部地
在这里插入图片描述在这里插入图片描述在这里插入图片描述
Octave的标号是从1开始的而不是从0开始
在这里插入图片描述

6-7 多元分类:一对多
Multi-class classification problem
Y可以取一些离散的值
One-versus-all classification一对多分类 也叫做One-versus-rest
拟合出多个分类器
在这里插入图片描述

Superscript上标 h superscript a h上标a
在这里插入图片描述

再选出最好的那个分类器

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值