部分分式分解
部分分式分解是将一个复杂的分式分解为几个简单分式的过程。它常用于积分、解方程或简化表达式。部分分式分解通常应用于有理函数,即分子和分母都是多项式的分式。
步骤
-
确定多项式的形式:
- 如果分母是一个多项式的乘积形式,如 ( x − a ) ( x − b ) ⋯ (x-a)(x-b) \cdots (x−a)(x−b)⋯,可以分解为简单的部分分式。
- 对于简单的分式 P ( x ) Q ( x ) \frac{P(x)}{Q(x)} Q(x)P(x),其中 P ( x ) P(x) P(x) 和 Q ( x ) Q(x) Q(x) 都是多项式,且 deg ( P ) < deg ( Q ) \text{deg}(P) < \text{deg}(Q) deg(P)<deg(Q),可以进行部分分式分解。
-
将分母多项式分解为一次因子和不可约的二次因子:
- 如果 Q ( x ) Q(x) Q(x) 可以分解为一次因子和不可约的二次因子,可以将其分解为部分分式形式。
- 对于一次因子 ( x − a ) (x-a) (x−a),部分分式为 A x − a \frac{A}{x-a} x−aA。
- 对于不可约的二次因子 ( x 2 + b x + c ) (x^2 + bx + c) (x2+bx+c),部分分式为 A x + B x 2 + b x + c \frac{Ax + B}{x^2 + bx + c} x2+bx+cAx+B。
-
写出部分分式的形式:
- 例如,如果
Q
(
x
)
=
(
x
−
a
)
(
x
−
b
)
(
x
2
+
b
x
+
c
)
Q(x) = (x-a)(x-b)(x^2 + bx + c)
Q(x)=(x−a)(x−b)(x2+bx+c),则:
P ( x ) Q ( x ) = A x − a + B x − b + C x + D x 2 + b x + c \frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{Cx + D}{x^2 + bx + c} Q(x)P(x)=x−aA+x−bB+x2+bx+cCx+D
- 例如,如果
Q
(
x
)
=
(
x
−
a
)
(
x
−
b
)
(
x
2
+
b
x
+
c
)
Q(x) = (x-a)(x-b)(x^2 + bx + c)
Q(x)=(x−a)(x−b)(x2+bx+c),则:
-
确定系数:
- 通过将右边的分式化为一个单一的分式形式,求出系数。通常通过将等式两边乘以 Q ( x ) Q(x) Q(x),然后比较两边的系数来确定未知系数 A , B , C , A, B, C, A,B,C, 和 D D D。
-
解方程:
- 比较系数或使用其他方法解出未知系数。
示例
对分式 2 x + 3 ( x − 1 ) ( x 2 + x + 1 ) \frac{2x+3}{(x-1)(x^2+x+1)} (x−1)(x2+x+1)2x+3 进行部分分式分解:
-
分解分母:
( x − 1 ) ( x 2 + x + 1 ) (x-1)(x^2+x+1) (x−1)(x2+x+1) -
设定部分分式形式:
2 x + 3 ( x − 1 ) ( x 2 + x + 1 ) = A x − 1 + B x + C x 2 + x + 1 \frac{2x+3}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx + C}{x^2+x+1} (x−1)(x2+x+1)2x+3=x−1A+x2+x+1Bx+C -
化为同分母:
2 x + 3 = A ( x 2 + x + 1 ) + ( B x + C ) ( x − 1 ) 2x + 3 = A(x^2 + x + 1) + (Bx + C)(x - 1) 2x+3=A(x2+x+1)+(Bx+C)(x−1) -
展开和比较系数:
2 x + 3 = A ( x 2 + x + 1 ) + ( B x 2 + C x − B x − C ) 2x + 3 = A(x^2 + x + 1) + (Bx^2 + Cx - Bx - C) 2x+3=A(x2+x+1)+(Bx2+Cx−Bx−C)
2 x + 3 = ( A + B ) x 2 + ( C − B + A ) x + ( A − C ) 2x + 3 = (A + B)x^2 + (C - B + A)x + (A - C) 2x+3=(A+B)x2+(C−B+A)x+(A−C)比较系数得到:
A + B = 0 A + B = 0 A+B=0
C − B + A = 2 C - B + A = 2 C−B+A=2
A − C = 3 A - C = 3 A−C=3 -
解方程:
通过解方程组确定 A , B , C A, B, C A,B,C 的值。
完成以上步骤后,你会得到分解后的部分分式。