( A ∗ ) ∗ = ∣ A ∣ n − 2 ⋅ A (A^*)^*=|A|^{n-2}·A (A∗)∗=∣A∣n−2⋅A(其中A可逆, A ∗ A^* A∗代表矩阵A的伴随矩阵, ∣ A ∣ |A| ∣A∣表示矩阵A的行列式 d e t ( A ) det(A) det(A))
证明如下:
-
∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n ⋅ ∣
( A ∗ ) ∗ = ∣ A ∣ n − 2 ⋅ A (A^*)^*=|A|^{n-2}·A (A∗)∗=∣A∣n−2⋅A(其中A可逆, A ∗ A^* A∗代表矩阵A的伴随矩阵, ∣ A ∣ |A| ∣A∣表示矩阵A的行列式 d e t ( A ) det(A) det(A))
证明如下:
∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n ⋅ ∣