成像基础 -- 焦距、物距、视野、画幅的数学公式及计算示例

焦距、物距、视野、画幅的数学公式及计算示例

本文将详细介绍焦距、物距、视野、画幅之间的数学公式关系,并通过一个实际计算示例说明如何计算全画幅相机的视野。

1. 基本概念

  • 焦距(Focal Length, f f f:镜头光学中心到成像平面的距离,通常以毫米(mm)为单位。焦距越短,视野越广,焦距越长,视野越窄。
  • 物距(Object Distance, d o d_o do:物体到镜头光学中心的距离,通常以米(m)或毫米(mm)为单位。
  • 像距(Image Distance, d i d_i di:成像平面(感光元件或胶片)到镜头光学中心的距离,通常以米(m)或毫米(mm)为单位。
  • 视野(Field of View, FOV):镜头成像的视角范围,可以是水平视野(Horizontal FOV, HFOV)、垂直视野(Vertical FOV, VFOV)或对角视野(Diagonal FOV, DFOV),以角度(度)为单位。
  • 画幅(Sensor Size, S S S:成像平面(感光元件)的尺寸,包括宽度、长度或对角线长度。

2. 镜头成像的基本公式

物距、像距和焦距之间的关系可以通过薄透镜成像公式表示:

1 f = 1 d o + 1 d i \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} f1=do1+di1

其中:

  • f f f 是焦距
  • d o d_o do 是物距
  • d i d_i di 是像距

当物体距离较远时,物距 d o d_o do 很大,像距 d i d_i di 接近焦距 f f f

3. 视野与画幅的关系

视野角度与画幅尺寸和焦距的关系如下:

  • 水平视野(HFOV) 公式:

H F O V = 2 × arctan ⁡ ( W 2 f ) HFOV = 2 \times \arctan\left(\frac{W}{2f}\right) HFOV=2×arctan(2fW)

  • 垂直视野(VFOV) 公式:

V F O V = 2 × arctan ⁡ ( H 2 f ) VFOV = 2 \times \arctan\left(\frac{H}{2f}\right) VFOV=2×arctan(2fH)

  • 对角视野(DFOV) 公式:

D F O V = 2 × arctan ⁡ ( D 2 f ) DFOV = 2 \times \arctan\left(\frac{D}{2f}\right) DFOV=2×arctan(2fD)

其中:

  • W W W 是感光元件的宽度
  • H H H 是感光元件的高度
  • D = W 2 + H 2 D = \sqrt{W^2 + H^2} D=W2+H2 是感光元件的对角线长度
  • f f f 是镜头的焦距

4. 全画幅相机视野计算示例

假设我们有一台全画幅相机(36mm × 24mm),并使用一支焦距为50mm的镜头,计算其水平视野(HFOV)、垂直视野(VFOV)和对角视野(DFOV)。

已知信息

  • 画幅尺寸:全画幅 36   mm × 24   mm 36 \, \text{mm} \times 24 \, \text{mm} 36mm×24mm
  • 焦距:50mm

4.1 水平视野(HFOV)

水平视野的计算公式为:

H F O V = 2 × arctan ⁡ ( W 2 f ) HFOV = 2 \times \arctan\left(\frac{W}{2f}\right) HFOV=2×arctan(2fW)

代入数据:

H F O V = 2 × arctan ⁡ ( 36 2 × 50 ) = 2 × arctan ⁡ ( 0.36 ) HFOV = 2 \times \arctan\left(\frac{36}{2 \times 50}\right) = 2 \times \arctan(0.36) HFOV=2×arctan(2×5036)=2×arctan(0.36)

计算得到:

H F O V ≈ 2 × 19.8 7 ∘ ≈ 39.7 4 ∘ HFOV \approx 2 \times 19.87^\circ \approx 39.74^\circ HFOV2×19.8739.74

因此,水平视野约为 39.7度

4.2 垂直视野(VFOV)

垂直视野的计算公式为:

V F O V = 2 × arctan ⁡ ( H 2 f ) VFOV = 2 \times \arctan\left(\frac{H}{2f}\right) VFOV=2×arctan(2fH)

代入数据:

V F O V = 2 × arctan ⁡ ( 24 2 × 50 ) = 2 × arctan ⁡ ( 0.24 ) VFOV = 2 \times \arctan\left(\frac{24}{2 \times 50}\right) = 2 \times \arctan(0.24) VFOV=2×arctan(2×5024)=2×arctan(0.24)

计算得到:

V F O V ≈ 2 × 13.5 3 ∘ ≈ 27.0 6 ∘ VFOV \approx 2 \times 13.53^\circ \approx 27.06^\circ VFOV2×13.5327.06

因此,垂直视野约为 27.1度

4.3 对角视野(DFOV)

首先计算感光元件的对角线长度:

D = 3 6 2 + 2 4 2 = 1296 + 576 = 1872 ≈ 43.27   mm D = \sqrt{36^2 + 24^2} = \sqrt{1296 + 576} = \sqrt{1872} \approx 43.27 \, \text{mm} D=362+242 =1296+576 =1872 43.27mm

对角视野的计算公式为:

D F O V = 2 × arctan ⁡ ( D 2 f ) = 2 × arctan ⁡ ( 43.27 2 × 50 ) = 2 × arctan ⁡ ( 0.4327 ) DFOV = 2 \times \arctan\left(\frac{D}{2f}\right) = 2 \times \arctan\left(\frac{43.27}{2 \times 50}\right) = 2 \times \arctan(0.4327) DFOV=2×arctan(2fD)=2×arctan(2×5043.27)=2×arctan(0.4327)

计算得到:

D F O V ≈ 2 × 23.3 6 ∘ ≈ 46.7 2 ∘ DFOV \approx 2 \times 23.36^\circ \approx 46.72^\circ DFOV2×23.3646.72

因此,对角视野约为 46.7度

5. 总结

通过以上计算,可以得出这台全画幅相机使用50mm镜头时的视野:

  • 水平视野(HFOV):39.7度
  • 垂直视野(VFOV):27.1度
  • 对角视野(DFOV):46.7度

这些计算方法在摄影设备选择和镜头设计中有广泛应用。

<think>嗯,用户想知道如何计算或测量相机的放大倍率,需要公式和方法。首先,我应该明确相机的放大倍率指的是什么。放大倍率通常是指体在传感器上的成像尺寸与实际体尺寸的比例。对吧?那可能需要涉及到传感器的尺寸和镜头的焦距。 接下来,可能需要区分光学放大倍率和系统放大倍率。光学放大倍率是镜头本身的属性,而系统可能还考虑其他因素,比如显示器的放大。例如,显微镜相机可能需要结合目镜和相机的参数。 然后,公式方面,光学放大倍率应该是传感器尺寸除以视场,或者用焦距除以工作离?或者可能是像高除以高?需要确认正确的公式。可能正确的公式是M = 传感器尺寸 / 视场尺寸,或者M = 焦距 / (工作- 焦距)。或者另一种情况是像除以,根据光学公式1/f = 1/u + 1/v,但可能需要近似处理。 另外,实际测量方法可能需要使用标准标定板,比如USAF分辨率测试卡,或者已知尺寸的体,通过拍摄后测量图像中的像素尺寸,再结合传感器像素大小来计算。例如,如果拍摄一个10mm的体,在图像上占据1000像素,每个像素4微米,那么实际成像尺寸是1000*0.004mm=4mm,放大倍率就是4mm/10mm=0.4倍。 还需要考虑显示器的放大,如果图像在屏幕上显示,可能会有额外的放大,所以系统总倍率是光学倍率乘以显示器的放大系数。比如,如果屏幕显示图像比传感器图像大20倍,那么总倍率是光学倍率乘以20。 可能的方法包括:使用标定板测量法、公式计算法(传感器尺寸和视场)、组合系统计算法(包括显示器)。每个步骤需要详细说明,并给出公式,例如M = (传感器尺寸)/(视场尺寸),或者M = 焦距/(工作离)(在远大于焦距时)。 另外,需要注意单位的统一,比如传感器尺寸可能是毫米,而视场也需要转换成相同单位。例如,传感器横向尺寸为8.8mm,视场横向为22mm,则倍率是0.4倍。 可能用户容易混淆的地方是光学倍率和系统总倍率的区别,需要明确说明。同时,代码示例可能有用,比如用Python计算倍率,或者处理图像测量像素尺寸。 最后,生成相关问题时要基于用户的问题,比如如何校准相机、显微镜倍率计算、标定板的使用方法等。</think>根据相机放大倍率的测量原理,提供三种常用方法及对应公式: **一、标定板测量法** $$M = \frac{H_{sensor}}{H_{object}} = \frac{N \times p}{H_{real}}$$ 使用USAF分辨率测试卡或棋盘格标定板: 1. 拍摄已知尺寸$H_{real}$的标定体 2. 测量图像中对应特征占用的像素数量$N$ 3. 查询相机传感器像素尺寸$p$(单位:mm/像素) 4. 计算实际成像高度$H_{sensor}=N \times p$ 示例代码处理图像特征尺寸: ```python import cv2 # 读取标定板图像并检测特征点 img = cv2.imread('calibration.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (9,6), None) # 计算对角特征点像素离 pixel_length = cv2.norm(corners[0]-corners[-1]) ``` **二、光学公式计算法** $$M = \frac{f}{u - f}$$ 适用条件:$u$>>焦距$f$ 1. 测量镜头焦距$f$(标注值或实测值) 2. 确定工作离$u$(面到镜头前主面离) 3. 当$u > 10f$时,可简化为$M \approx f/u$ **三、组合系统计算法** $$M_{total} = M_{optical} \times M_{display}$$ 适用于显微成像等复合系统: 1. 相机光学倍率$M_{optical}=H_{sensor}/H_{object}$ 2. 显示器放大倍率$M_{display}=H_{screen}/H_{sensor}$ 3. 总放大倍率为两级放大乘积 **注意事项:** - 工业相机常用像元尺寸参数表: | 传感器类型 | 像元尺寸(μm) | |------------|--------------| | 1/2.3" | 1.55×1.55 | | 4/3" | 3.30×3.30 | | 全画幅 | 8.45×8.45 | - 显微系统需考虑镜倍率$M_{obj}$和适配器倍率$M_{adapter}$:$M_{system} = M_{obj} \times M_{adapter}$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值