CINTA第一次作业
1.迭代版本的简单乘法
#include
#include
using namespace std;
int main()
{
int a,b,B, c,n; int result = 0;
cin >> a >> b;
B = b;
for (int i = 1;; i++)
{
B /= 2;
if (B == 0) { n = i; break; }
}
for (int i = 0; i < n ; i++)
{
c = b % 2;
result += c * a * pow(2, i);
b /= 2;
}
cout << result;
}
2.定理1.1除法算法的完整证明
· 存在性
构造集合
S={a-kb : k∈Z 同时 a-kb>=0}。
显然,集合S非空。由良序原则,存在一个最小元r∈S,同时r=a-qb。因此,a=qb+r,r>=0。因为r是最小元,a,b是常数,所以q是k取得的的最大值。设R=a-(q+1)b,当q取q=q+1时,R肯定比r小,但因为r>=0,所以R不能是比r小的非负数,否则r将不是最小元,所以R肯定小于0,再将R=a-(q+1)b与r=a-qb联立可得R=r-b。即r-b<0,r<b。
·唯一性
由r=a-qb可得r=-qb+a,因为a,b是常数,所以这是一个单调递减的一次函数,所以只存在唯一一对q和r。
3.迭代版本的gcd算法
egcd算法
利用gcd算法完成功能
#include
using namespace std;
int gcd(int n)
{
int num = 0; int tn = n;
for (int i = 1;i<tn; i++)
{
int t = i;
for (int j = 0;; j++)
{
int temp = n;
n=t;
t = temp % t;
if ((t == 0) && (n == 1)) { num++; n = tn; break; }
else if ((t == 0) && (n != 1)) { n = tn; break; }
}
}
return num;
}
int main()
{
int n;
cin >> n;
cout << gcd(n);
}
6.假设 g a ≡ 1 ( m o d m ) 且 g b ≡ 1 ( m o d m ) g^a ≡ 1 (mod m) 且 g^b ≡ 1 (mod m) ga≡1(modm)且gb≡1(modm),请证明 g g c d ( a , b ) ≡ 1 ( m o d m ) g^{gcd(a,b)} ≡ 1 (mod m) ggcd(a,b)≡1(modm)
证:
由Bezout定理,
g
c
d
(
a
,
b
)
=
a
r
+
b
s
gcd(a,b)=ar+bs
gcd(a,b)=ar+bs。
g
a
r
≡
1
r
(
m
o
d
m
)
g^{ar} ≡ 1^r(mod m)
gar≡1r(modm),
g
b
s
≡
1
s
(
m
o
d
m
)
g^{bs} ≡ 1^s(mod m)
gbs≡1s(modm),所以
g
a
r
∗
g
b
s
=
1
r
∗
1
s
(
m
o
d
m
)
=
1
(
m
o
d
m
)
g^{ar}*g^{bs}=1^r*1^s(mod m)=1(mod m)
gar∗gbs=1r∗1s(modm)=1(modm)。而
g
g
c
d
(
a
,
b
)
=
g
a
r
∗
g
b
s
g^{gcd(a,b)} =g^ar*g^bs
ggcd(a,b)=gar∗gbs,所以
g
g
c
d
(
a
,
b
)
≡
1
(
m
o
d
m
)
g^{gcd(a,b)} ≡ 1 (mod m)
ggcd(a,b)≡1(modm)
8.证明:如果 gcd(a, b) = d,则 gcd(a/d, b/d) = 1。
证:
由Bezout定理,gcd(a,b)=ar+bs,所以d=ar+bs,由gcd(a/d, b/d) = 1,可得ar/d+bs/d=1,代入d可得ar+bs/ar+bs=1,即gcd(a/d, b/d) = 1。