【阿姆斯特丹博士论文】在测试时学习泛化

来源:专知
本文约1000字,建议阅读5分钟
本论文聚焦于提升泛化能力这一关键问题,尤其是在测试时泛化,即在训练阶段无法访问测试数据的前提下提高模型在测试阶段的表现。

图片

泛化能力,即将从已见上下文中学习到的知识有效应用于陌生情境的能力,是人类智能的重要特征,但对当前的人工智能系统而言仍是一项重大挑战。传统的机器学习算法通常依赖于训练数据与测试数据来自相同分布的假设,因此在面临分布偏移时,其性能往往显著下降。本论文聚焦于提升泛化能力这一关键问题,尤其是在测试时泛化,即在训练阶段无法访问测试数据的前提下提高模型在测试阶段的表现。

本论文的结构如下:

  1. 训练阶段的泛化模型学习:通过贝叶斯神经网络中的不变性学习实现更具泛化能力的模型训练;

  2. 测试阶段的泛化模型学习:在无标签和无额外测试信息的情况下,利用元学习和变分推断技术,使模型能对每个测试样本直接进行自适应;

  3. 测试阶段的泛化样本学习:采用能量模型将测试样本适配至训练分布,以避免调整模型本身,从而规避灾难性遗忘问题;

  4. 测试阶段的泛化提示学习(prompt-learning):面向多模态基础模型,设计新颖的提示学习框架,涵盖针对任意类型分布偏移的测试任务专属提示生成,以及用于在线提示更新的动态测试时提示调整方法。

每一章均提出了创新方法,详细介绍了方法论与实验结果,展示了在测试阶段提升泛化能力的全面路径。

最后,论文进一步探讨了测试时泛化的历史与未来,并系统回顾了测试时自适应(Test-Time Adaptation, TTA)领域的研究进展,为测试时泛化的发展提供了全面总结与未来展望。

https://hdl.handle.net/11245.1/a165fad4-684a-4767-9e55-1caa83e59f59

图片

图片

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值