独家 | ARIMA/Sarima与LSTM的时间序列数据集成学习(附链接)

本文深入探讨了ARIMA、SARIMA与LSTM在时间序列预测中的应用,指出LSTM在处理非线性关系和复杂数据结构方面的优势。通过集成学习方法,如AdaBoost-LSTM,可以提升预测性能。传统ARIMA模型适合短期预测,而LSTM在长期预测中表现出色。研究表明,LSTM相比于ARIMA在某些场景下能取得更高预测精度。
摘要由CSDN通过智能技术生成

640?wx_fmt=png

作者:夏米莎·查特吉 Sharmistha Chatterjee 

翻译:陈之炎

校对:吴金笛

本文约5500字,建议阅读10+分钟。

本文探讨了简单的ARIMA/Sarima与LSTM的时间序列数据集成学习方面的问题。


Sharmistha Chatterjee

https://towardsdatascience.com/@sharmi.chatterjee


动机


传统时间序列预测中最常使用到的时间序列模型有以下五种,包括:


  • 自回归(AR)模型;

  • 移动平均(MA)模型;

  • 自回归移动平均(ARMA)模型;

  • 自回归整合移动平均模型(ARIMA);

  • 季节性整合自回归移动平均模型(SARIMA)模型。


自回归AR模型以时间序列的前一个值和当前残差来线性地表示时间序列的当前值,而移动平均MA模型则用时间序列的当前值和先前的残差序列来线性地表示时间序列的当前值。


ARMA模型是AR模型和MA模型的结合,其中时间序列的当前值线性地表示为它先前的值以及当前值和先前的残差序列。AR、MA和ARMA模型中定义的时间序列均是平稳过程,即这些模型的均值及其观测值之间的协方差不随时间的变化而变化。


对于非平稳时间序列,必须先将序列转换为平稳的随机序列。ARIMA模型一般适用于基于ARMA模型的非平稳时间序列,其差分过程可有效地将非平稳数据转换为平稳数据。将季节差分与ARIMA模型相结合的SARIMA模型用于具有周期性特征的时间序列数据建模。


通过比较时间序列中这些算法模型的性能,发现机器学习方法均优于简单的传统方法,其中ETS模型和ARIMA模型的整体性能最好。下图是各模型之间的比较。


640?wx_fmt=png


然而,除了传统的时间序列预测外,近年来,在时间序列预测的深度学习领域,循环神经网络(RNN)和长短期记忆(LSTM)在计算机视觉、自然语言处理和金融等多个学科中得到了广泛的应用。深度学习方法在时间序列预测中能够识别诸如非线性度和复杂度等数据的结构和模式。


关于新开发的基于深度学习的预测时间序列数据的算法,如“长短期记忆 (LSTM)”,是否优于传统的算法, 仍然是一个开放的还待研究的问题。


本文的结构如下:


  • 了解深度学习算法RNN、LSTM以及与LSTM集成学习如何提高性能。

  • 了解传统的时间序列模型技术ARIMA,以及当它与MLP和多元线性回归相结合时,如何在集成方法中改进时间序列预测。

  • 了解使用ARIMA与LSTM的问题和场景,两者间的优劣对比。了解使用SARIMA进行时间序列建模时,如何与其他基于空间、基于决策和基于事件的模型进行集成学习。


然而,本文没有对更为复杂的时间序列问题做深入的阐述。例如:复杂的不规则时间结构,观测缺失值,多变量之间的强噪声和复杂关系。


LSTM


LSTM是一种特殊的RNN,它由一组具有特征的单元集合组成,利用这些特征来记忆数据序列,集合中的单元用于捕获并存储数据流。此外,集合中的单元构成先前的模块与当前的模块的内部互连,从而将来自多个过去时间瞬间的信息传送给当前的模块。每个单元中会使用到门,为下一个单元处理、过滤或添加单元中的数据。


单元中的门基于Sigmoidal神经网络层,使单元可以选择性地让数据通过或丢弃,每个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值