关于空洞填充和求重心

来自你的消息:

opencv如何时间填充空洞算法?

来自ChatAI的消息:

OpenCV中有两种常用的空洞填充算法,分别是基于形态学操作和基于图像分割的方法。下面我将介绍这两种算法的实现方法:

  1. 形态学操作

形态学操作是基于图像形态学理论的一种像素级别处理方法,它通过对图像中的结构进行操作,从而实现图像的分割、去噪、边缘检测、形态学变换等。在OpenCV中,我们可以使用形态学操作中的膨胀和腐蚀操作来进行空洞填充。步骤如下:

  1. 将二值图像反转,将空洞变成背景色;
  2. 对反转后的图像进行膨胀和腐蚀操作,使得小孔缩小或者大小保持不变;
  3. 再次反转图像,将填充好的空洞颜色变回前景色。

在代码实现中,可以使用OpenCV中的cv2.dilate()cv2.erode()函数来进行膨胀和腐蚀操作,示例如下:

import cv2

# 读取二值图像,将白色视为前景色,黑色视为背景色
img = cv2.imread('binary_image.png', cv2.IMREAD_GRAYSCALE)

# 反转图像,将空洞变成背景色
img = cv2.bitwise_not(img)

# 膨胀和腐蚀操作,使得小孔缩小或者大小保持不变
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5,5))
img = cv2.dilate(img, kernel)
img = cv2.erode(img, kernel)

# 再次反转图像,将填充好的空洞颜色变回前景色
img = cv2.bitwise_not(img)

# 显示结果图像
cv2.imshow('Filled Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
  1. 图像分割

图像分割是将一幅图像划分为若干个互不重叠的区域,使得区域内部的像素具有相似的属性,并与比邻的区域内的像素差异较大。常用的图像分割算法包括基于阈值的分割、基于聚类的分割、基于边缘的分割等。在OpenCV中,可以使用基于阈值的分割算法来进行空洞填充,步骤如下:

  1. 将原始图像转换为灰度图像,然后进行高斯滤波;
  2. 对高斯滤波后的图像进行阈值分割,将灰度值低于阈值的像素视为背景色,高于阈值的像素视为前景色;
  3. 对二值图像进行形态学闭操作,填补前景色中的小孔或空洞;
  4. 用原始的二值图像减去填补后的图像,得到最终的空洞填充结果。

在代码实现中,可以使用OpenCV中的cv2.GaussianBlur()cv2.threshold()cv2.morphologyEx()等函数来实现,示例如下:

import cv2

# 读取原始图像,转换为灰度图像
img = cv2.imread('image.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 高斯滤波
blur = cv2.GaussianBlur(gray, (5, 5), 0)

# 阈值分割
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)

# 形态学闭操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))


## 来自你的消息:
继续

## 来自ChatAI的消息:
# 对二值图像进行形态学闭操作
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

# 得到空洞
hole = closed - thresh

# 填充空洞
filled = hole.copy()
contours, hierarchy = cv2.findContours(filled, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
    cv2.drawContours(filled, [contours[i]], 0, 255, -1)

# 显示填充后的图像
cv2.imshow('Filled Image', filled)
cv2.waitKey(0)
cv2.destroyAllWindows()

值得注意的是,基于图像分割的空洞填充算法需要通过阈值分割得到二值图像,因此对于一些复杂的图像,可能需要更加精细的参数调整才能得到较好的填充结果。

来自你的消息:

opencv根据 轮廓求一个图形的重心

来自ChatAI的消息:

在OpenCV中可以使用cv2.moments()函数来计算一个轮廓的矩,进而得到轮廓的重心坐标。具体实现步骤如下:

  1. 找到目标的轮廓。

  2. 计算轮廓的矩。

  3. 计算轮廓的重心。

示例代码如下:

import cv2

# 读取图像
img = cv2.imread('image.png')

# 转换为灰度图像并进行二值化处理
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 计算每个轮廓的矩和重心
for cnt in contours:
    # 计算轮廓的矩
    M = cv2.moments(cnt)

    # 计算轮廓的重心
    if M['m00'] != 0:
        cx = int(M['m10'] / M['m00'])
        cy = int(M['m01'] / M['m00'])
        # 在图像上标记重心
        cv2.circle(img, (cx, cy), 5, (0, 0, 255), -1)

# 显示结果图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在实现过程中,首先读取图像并将其转化为灰度图像,并使用二值化处理得到目标区域的二值图像。然后使用cv2.findContours()函数查找轮廓,并对每个轮廓计算矩和重心。最后使用cv2.circle()函数在图像上标记重心,并显示结果图像。

来自你的消息:

根据轮廓求重心的公式是?

来自ChatAI的消息:

根据轮廓求重心的公式如下:

x = M10/M00
y = M01/M00

其中M00表示轮廓的零阶矩,M10表示轮廓的一阶矩x坐标部分,M01表示轮廓的一阶矩y坐标部分。上述公式可以通过OpenCV中的cv2.moments()函数进行计算。函数返回的是一个字典对象,包含了轮廓的各种矩的信息,因此可以很方便地计算出轮廓的重心坐标。

来自你的消息:

M10的相关公式

来自ChatAI的消息:

M10的数学公式为:

M10 = ∫∫x*f(x,y)dxdy

其中,x和y分别为图像中的像素位置,f(x,y)表示在该位置处像素的灰度值。

对其离散化后,可以用以下公式计算M10:

M10 = ∑(x,y) xyf(x,y)

其中,求和符号内的(x,y)表示遍历图像中所有的像素,xy表示当前像素的位置坐标,f(x,y)为该位置处的像素值。

来自你的消息:

请使用markdown格式输出公式。

来自ChatAI的消息:

M10的数学公式为:

M 10 = ∬ x ⋅ f ( x , y )   d x   d y M_{10} = \iint x\cdot f(x,y) \,dx\,dy M10=xf(x,y)dxdy

其中,x和y分别为图像中的像素位置,f(x,y)表示在该位置处像素的灰度值。

对其离散化后,可以用以下公式计算M10:

M 10 = ∑ x , y x y ⋅ f ( x , y ) M_{10} = \sum_{x,y}xy\cdot f(x,y) M10=x,yxyf(x,y)

其中,求和符号内的(x,y)表示遍历图像中所有的像素,xy表示当前像素的位置坐标,f(x,y)为该位置处的像素值。

来自你的消息:

请给出M01和M00的公式

来自ChatAI的消息:

M01的数学公式为:

M 01 = ∬ y ⋅ f ( x , y )   d x   d y M_{01} = \iint y\cdot f(x,y) \,dx\,dy M01=yf(x,y)dxdy

其中,x和y分别为图像中的像素位置,f(x,y)表示在该位置处像素的灰度值。

对其离散化后,可以用以下公式计算M01:

M 01 = ∑ x , y y ⋅ f ( x , y ) M_{01} = \sum_{x,y}y\cdot f(x,y) M01=x,yyf(x,y)

其中,求和符号内的(x,y)表示遍历图像中所有的像素,y表示当前像素的y坐标,f(x,y)为该位置处的像素值。

M00表示轮廓的零阶矩,其数学公式为:

M 00 = ∬ f ( x , y )   d x   d y M_{00} = \iint f(x,y) \,dx\,dy M00=f(x,y)dxdy

对其离散化后,可以用以下公式计算M00:

M 00 = ∑ x , y f ( x , y ) M_{00} = \sum_{x,y}f(x,y) M00=x,yf(x,y)

其中,求和符号内的(x,y)表示遍历图像中所有的像素,f(x,y)为该位置处的像素值。

来自你的消息:

对比M10和M01的公式,上述 M10的离散化公式是否有误?

来自ChatAI的消息:

非常抱歉,我的回答有误。对于M10的离散化公式,应为:

M 10 = ∑ x , y x ⋅ f ( x , y ) M_{10} = \sum_{x,y}x\cdot f(x,y) M10=x,yxf(x,y)

其中,求和符号内的 ( x , y ) (x,y) (x,y)表示遍历图像中所有的像素, x x x表示当前像素的x坐标, f ( x , y ) f(x,y) f(x,y)为该位置处的像素值。

感谢你的指出,如果有其他问题,请随时提出。

% 读取图片文件夹中的所有图片 img_folder = 'C:\Users\15225\Desktop\keti_matlab\Pending images/'; img_files = dir(fullfile(img_folder, '*.bmp')); for i = 1:length(img_files) % 读取图片 img = imread(fullfile(img_folder, img_files(i).name)); % 灰度化 gray_img = im2gray(img); % 阈值分割-亮度大于该值的设置为1(亮点) 反之为0(暗点) threshold = 240; bw_img = gray_img > threshold; % 去除小的连通域-像素个数大于该值的会被计算标记 反之不计算标记 bw_img = bwareaopen(bw_img, 750); % 填充连通域内部空洞 bw_img = imfill(bw_img, 'holes'); % 获取连通域属性-获取二值图像中所有连通域的重心坐标 CC = bwconncomp(bw_img); stats = regionprops(CC, 'Centroid'); % 在原图上绘制标记点和序号 figure; imshow(img); hold on; markers = struct('index', {}, 'position', {}); for j = 1:length(stats) x = stats(j).Centroid(1); y = stats(j).Centroid(2); % 绘制红色圆点大小为 - 10 宽度为 - 2 plot(x, y, 'ro', 'MarkerSize', 10, 'LineWidth', 2); % 在标记点旁边添加序号文本 text(x+10, y+10, num2str(j), 'Color', 'r'); % 存储序号和位置信息到结构体数组 markers(j).index = j; markers(j).position = [x, y]; end % 保存 二值化 图片 result_folder = 'C:\Users\15225\Desktop\keti_matlab\results\'; bw_result_file = fullfile(result_folder, sprintf('bw_result_%d.bmp', i)); imwrite(bw_img, bw_result_file); fprintf('Extracted markers saved to file: %s\n', bw_result_file); % 保存 重心标记 图片 result_file = fullfile(result_folder, sprintf('result_%d.bmp', i)); saveas(gcf, result_file); fprintf('Extracted markers saved to file: %s\n', result_file); % 保存 重心坐标 到文件 result_txt_file = fullfile(result_folder, sprintf('result_%d.txt', i)); fid = fopen(result_txt_file, 'w'); for j = 1:length(markers) fprintf(fid, 'Marker #%d: (%.6g, %.6g)\n', markers(j).index, markers(j).position); end fclose(fid); end 添加代码需,保存重心在世界坐标系下的坐标
06-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值