干扰管理学习日志14-------强化学习_计算卸载_载波分配_功率分配


本文是对论文《Multi-Agent Driven Resource Allocation and Interference Management for Deep Edge Networks》的分析,若需下载原文请依据前方标题搜索,第一作者为Yongkang Gong

一、文章概述

这篇文章中,作者为MEC边缘服务器场景,提出了一种使用强化学习方法,控制卸载决策、载波分配、基站功率等级的方法。结果表明,方案在节省系统总开销上有着显著的效果。

二、系统环境

在这里插入图片描述
整个系统的环境如图所示,由一个宏基站与多个协同的无线接入点ap构成,服务于区域内的用户。每个协同无线接入点配备有边缘服务器,用于更高效的完成用户侧的计算任务。

三、系统模型

1.优化任务

在这里插入图片描述
整个系统的优化目标是本地与边缘服务器的总能耗与时延最小化。其中在这里插入图片描述为卸载决策,取值为0或1。在这里插入图片描述为作者通过数学模型推导出的本地计算最优解。在这里插入图片描述为服务器侧总时延,在这里插入图片描述为服务器侧总能耗。在这里插入图片描述在这里插入图片描述为服务器侧时延与能耗权重。

2.约束条件

在这里插入图片描述在这里插入图片描述

四、算法详解

作者使用基于强化学习的多智体DDPG(Deep Deterministic Policy Gradient)算法求解模型,算法流程图如下所示。
在这里插入图片描述

1.输入状态

在这里插入图片描述
输入状态为各个载波频段的状态信息。

2.输出动作

在这里插入图片描述
输出动作包括卸载决策、信道分配、功率分配。

3.环境反馈

在这里插入图片描述
环境反馈为任务目标的负值。

4.伪代码

在这里插入图片描述

五、性能表征

1.总开销(任务量)

在这里插入图片描述

2.总开销(边缘云速度)

在这里插入图片描述

3.总开销

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@白圭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值