本文是对论文《Multi-Agent Driven Resource Allocation and Interference Management for Deep Edge Networks》的分析,若需下载原文请依据前方标题搜索,第一作者为Yongkang Gong
一、文章概述
这篇文章中,作者为MEC边缘服务器场景,提出了一种使用强化学习方法,控制卸载决策、载波分配、基站功率等级的方法。结果表明,方案在节省系统总开销上有着显著的效果。
二、系统环境
整个系统的环境如图所示,由一个宏基站与多个协同的无线接入点ap构成,服务于区域内的用户。每个协同无线接入点配备有边缘服务器,用于更高效的完成用户侧的计算任务。
三、系统模型
1.优化任务
整个系统的优化目标是本地与边缘服务器的总能耗与时延最小化。其中为卸载决策,取值为0或1。为作者通过数学模型推导出的本地计算最优解。为服务器侧总时延,为服务器侧总能耗。与为服务器侧时延与能耗权重。
2.约束条件
四、算法详解
作者使用基于强化学习的多智体DDPG(Deep Deterministic Policy Gradient)算法求解模型,算法流程图如下所示。
1.输入状态
输入状态为各个载波频段的状态信息。
2.输出动作
输出动作包括卸载决策、信道分配、功率分配。
3.环境反馈
环境反馈为任务目标的负值。