Bray-Curtis相异矩阵概念
Bray-Curtis相异矩阵常用Bray-Curtis。Bray-Curtis相异度是生态学中用来衡量不同样地物种组成差异的测度,可以计算生物样本中不同物种组成的数量特征。包括:多度,盖度,重要值等。优点:Bray-curtis计算时,不仅考虑样本中物种的有无,而且还考虑不同物种的相对丰度。
Bray-Curtis相异系数对数化的意义
一般常规的是使用原始数据,直接对数据进行求相异系数,如下:
spe.db <- vegdist(spe) # Bray-Curtis相异系数
head(spe.db)
[1] 0.6000000 0.6842105 0.7500000 0.8918919 0.7500000 0.6842105
然而,生物多样性中的数据较为复杂,数值之间存在很大的极差。为了消除这一影响,采用的方法是进行取对数,对数转换的好处是:
1.缩小数据的绝对数值,方便计算。例如,每个数据项的值都很大,许多这样的值进行计算可能对超过常用数据类型的取值范围,这时取对数,就把数值缩小,便于计算;
2.取对数后,可以将乘法计算转换称加法计算;
3.数据的整个值域中的在不同区间的差异带来的影响不同,对数值小的部分差异的敏感程度比数值大的部分的差异敏感程度更高;
4.取对数之后不会改变数据的性质和相关关系,但压缩了变量的尺度,数据更加平稳,也消弱了模型的共线性、异方差性等。
进行对数化的相异矩阵
spe.dbln <- vegdist(log1p(spe))
head(spe.dbln)
## [1] 0.5509095 0.6280761 0.7446012 0.8664653 0.7657643 0.6519273