4.3 协方差及相关系数、矩

学习目标: 

我正在学习协方差、相关系数和矩,我会采取以下措施:

  1. 理解基本概念:首先,我会努力理解协方差、相关系数和矩的基本概念。我会查阅参考资料,例如课本或在线教程,以便深入了解这些概念的定义和特点。

  2. 学习数学公式:协方差、相关系数和矩都涉及到一些数学公式和计算方法,我会仔细学习这些公式,并努力理解它们的意义和应用。

  3. 使用计算工具:在学习过程中,我会使用一些计算工具来帮助我计算协方差、相关系数和矩。例如,我可以使用Excel或其他统计软件来计算这些指标,以便更好地理解它们的计算过程和结果。

  4. 实际应用:学习过程中,我会尝试将所学的内容应用于实际问题中。例如,我可以使用协方差和相关系数来研究两个变量之间的关系,或使用矩来描述数据分布的特征。

  5. 多角度思考:最后,我会从不同角度思考协方差、相关系数和矩的概念和应用。例如,我会尝试将其与其他统计指标进行比较,或探讨其在不同领域的应用。通过多角度思考,我相信我能更好地理解这些指标的含义和作用。

 我的理解:

协方差是用来衡量两个随机变量之间关系的一种统计指标。其数值表示这两个随机变量的变化趋势是否一致,如果一致,则协方差为正值;如果相反,则协方差为负值。如果两个随机变量之间没有关系,则协方差为零。


2023/5/7 补充

疑问两个随机变量之间关系是什么意思?它们又有什么样的关系

解答:

在统计学中,"两个随机变量之间的关系"通常指的是它们之间的相关性或者联合变异性。如果两个随机变量的取值趋向于同时增加或同时减少,那么它们之间存在正相关性;反之,如果一个随机变量的取值增加,而另一个随机变量的取值减少,那么它们之间存在负相关性。如果两个随机变量之间没有任何关系,那么它们之间的协方差为0。

因此,协方差可以用来衡量两个随机变量之间的线性相关性,即它们之间是否具有相似的趋势。如果两个随机变量之间的协方差为正数,那么它们之间存在正相关性;如果协方差为负数,那么它们之间存在负相关性;如果协方差为0,则它们之间没有任何关系。

简单的说就是如果两随机变量同增同减那么它的协方差大于0,两个随机变量没有关系那么它的协方差一定=0,如果一个随机变量增加另一个则减小那么它的协方差一定小于0。


协方差的计算公式为:

Cov(X,Y) = E[(X-E[X])(Y-E[Y])]

其中,X和Y是两个随机变量,E[X]和E[Y]分别是它们的期望值。

协方差的重点和难点包括:

  1. 协方差的符号和大小反映了两个随机变量之间的关系,但具体如何解释协方差的值需要根据具体场景进行分析和判断。

  2. 协方差的计算需要先求出两个随机变量的期望值,这对于复杂的数据分布和模型可能比较困难。

  3. 协方差受到单位的影响,因此在比较不同数据集或不同变量之间的协方差时需要进行标准化处理。

  4. 协方差也存在一些局限性,例如不能区分两个随机变量之间的因果关系,也不能直接比较不同数据集或不同变量之间的相似程度。

因此,在使用协方差时,需要考虑具体应用场景,并结合其他统计指标和方法进行综合分析和判断。

协方差是用来衡量两个随机变量之间关系的一种统计指标。它的计算基于随机变量的期望值,可以通过比较两个随机变量的取值与其期望值之间的差异,来评估它们之间的关系。

具体来说,如果两个随机变量的取值变化趋势一致,那么它们的差值(即取值与期望值之差)应该大部分是同号的,因此协方差值为正;如果它们的变化趋势相反,那么它们的差值大部分应该是异号的,因此协方差值为负。如果两个随机变量之间没有关系,那么它们的差值应该是随机的,协方差值应该接近于0。

因此,可以将协方差理解为衡量两个随机变量之间关系的一种度量,它反映了两个随机变量的变化趋势是否一致,以及变化幅度的大小。通过协方差可以初步判断两个随机变量之间的关系,但需要注意其局限性和不足之处,例如不能区分因果关系和受单位的影响等。


2023/5/7 补充 

协方差的五条性质:

协方差是用来衡量两个随机变量之间关系的一种统计指标,它具有以下性质:

  1. 协方差是对称的。也就是说,cov(X,Y) = cov(Y,X)。

  2. 如果两个随机变量X和Y独立,它们的协方差为0。这是因为,当X和Y独立时,它们之间不存在任何关系,因此它们的协方差为0。

  3. 协方差的绝对值越大,表示两个随机变量之间的相关性越强。当协方差为0时,表示两个随机变量之间没有任何关系;当协方差为正数时,表示两个随机变量之间存在正相关性;当协方差为负数时,表示两个随机变量之间存在负相关性。

  4. 如果两个随机变量的方差相同,那么它们的标准差也相同,此时它们之间的协方差可以被解释为它们之间的相关系数。相关系数是一个无量纲量,它的取值范围在-1到1之间,用来衡量两个随机变量之间线性相关的强度和方向。

  5. 协方差可以用来计算两个随机变量的方差。具体地,如果X和Y是两个随机变量,那么它们的方差可以表示为Var(X) = cov(X,X)和Var(Y) = cov(Y,Y)。

对这五个性质的证明:

1. 协方差是对称的。也就是说,cov(X,Y) = cov(Y,X)。

证明:根据协方差的定义,有cov(X,Y) = E[(X - E(X))(Y - E(Y))]。由于期望运算符是线性的,因此可以将上式改写为cov(Y,X) = E[(Y - E(Y))(X - E(X))]。根据乘法交换律,可以将上式改写为cov(Y,X) = E[(X - E(X))(Y - E(Y))],即cov(Y,X) = cov(X,Y)。因此,协方差是对称的。

2. 如果两个随机变量X和Y独立,它们的协方差为0。

证明:当X和Y独立时,它们之间不存在任何关系,因此它们的协方差为0。具体地,根据协方差的定义,有cov(X,Y) = E[(X - E(X))(Y - E(Y))],由于X和Y独立,所以E[(X - E(X))(Y - E(Y))] = E[(X - E(X))]E[(Y - E(Y))] = 0,因此cov(X,Y) = 0。

3. 协方差的绝对值越大,表示两个随机变量之间的相关性越强。

证明:由于协方差的定义是两个随机变量之间的线性相关性的度量,因此当两个随机变量之间的相关性越强时,它们的协方差的绝对值也就越大。具体地,当两个随机变量之间的相关系数为1时,它们之间存在完全正相关,此时它们的协方差等于它们各自的方差之和;当两个随机变量之间的相关系数为-1时,它们之间存在完全负相关,此时它们的协方差等于它们各自的方差之差的相反数;当两个随机变量之间的相关系数为0时,它们之间不存在任何关系,此时它们的协方差为0。因此,协方差的绝对值越大,表示两个随机变量之间的相关性越强。

4. 如果两个随机变量的方差相同,那么它们的标准差也相同,此时它们之间的协方差可以被解释为它们之间的相关系数。

证明:由于方差的定义是标准差的平方,因此如果两个随机变量的方差相同,那么它们的标准差也相同。具体地,设X和Y是两个随机变量,它们的方差均为σ^2,即

$Var(X) = Var(Y) = \sigma^2$,则它们的标准差均为$\sigma$,即$Std(X) = Std(Y) = \sigma$。此时,它们之间的协方差可以被解释为它们之间的相关系数,即

 

因此,如果两个随机变量的方差相同,那么它们之间的协方差可以被解释为它们之间的相关系数。

5. 协方差满足线性运算的性质。具体来说,对于任意两个随机变量X、Y和任意常数a、b,有cov(aX + b, Y) = a cov(X,Y)。

证明:根据协方差的定义,有

\begin{aligned}
cov(aX + b, Y) &= E[(aX + b - E(aX + b))(Y - E(Y))] \\
&= E[a(X - E(X))(Y - E(Y))] \\
&= a E[(X - E(X))(Y - E(Y))] \\
&= a cov(X,Y).
\end{aligned}

因此,协方差满足线性运算的性质。

我的思考:

性质2可以反过来说如果两个随机变量协方差等于0就一定两随机变量独立吗?

不能,理由如下

协方差等于0并不一定意味着两个随机变量是独立的,只有在一些特殊情况下它们才是独立的。

具体来说,如果两个随机变量X和Y是独立的,那么它们之间的协方差就为0,即$Cov(X,Y)=0$。但是,协方差等于0并不一定说明它们是独立的。反例如下:

假设$X$在区间$[-1,1]$上均匀分布,$Y=X^2$,则有$E(X)=0, E(Y)=1/3$,而$Cov(X,Y)=E(XY)-E(X)E(Y)=E(X^3)-E(X)E(X^2)=0$,因为$E(X^3)=0$。

但是,显然$X$和$Y$不是独立的,因为当$X$等于任意一个负数或正数时,$Y$都等于正数。因此,协方差等于0并不一定意味着两个随机变量是独立的。


 


做题过程中要注意的点

求x和y的期望的时候先求下x和y的边缘概率密度然后再通过概率密度求它们的期望,我第一次做的时候把它联合概率密度拿来求期望了。

注意求期望的时候不要漏乘x因为期望的公式就是由x和概率乘积的求和或则积分 。

 


 

 

 


2023/5/7 补充

相关系数:

相关系数是衡量两个随机变量之间线性关系强度的一种度量方法。它的取值范围在-1到1之间,值越接近于1或-1,表示两个变量之间的关系越强,值越接近于0则表示两个变量之间的关系越弱或者无关。

如果相关系数为正数,则表示两个变量之间有正的线性关系,即当一个变量增加时,另一个变量也会随之增加。反之,如果相关系数为负数,则表示两个变量之间有负的线性关系,即当一个变量增加时,另一个变量会随之减少。

相关系数的计算方法是利用两个变量的协方差和各自的标准差来求得的。具体而言,设X和Y为两个随机变量,其样本值分别为(x1,y1),(x2,y2),...,(xn,yn),则它们的相关系数r可以通过以下公式来计算:

r = cov(X,Y) / (sX * sY)

其中,cov(X,Y)表示X和Y的协方差,sX和sY分别表示X和Y的标准差。

相关系数具有以下特点:

1. 相关系数的取值范围在-1到1之间,当取值为-1时,表示两个变量完全负相关;当取值为1时,表示两个变量完全正相关;当取值为0时,表示两个变量之间不存在线性关系。

2. 相关系数具有对称性,即r(X,Y) = r(Y,X)。

3. 相关系数不受单位的影响,即变量的测量单位不同,其相关系数仍然是一样的。

4. 相关系数只能衡量两个变量之间的线性关系,不能反映出它们之间的非线性关系。

5. 相关系数对异常值比较敏感,当存在异常值时,可能会对相关系数的计算产生很大的影响。

 


 

我的理解:

在数学中,矩是描述一个集合的各种属性的一种数学工具,它可以衡量集合中的元素与某个特定点的距离、分布等特征。常见的矩包括原点矩、中心矩、标准化矩等,它们在统计学、物理学、工程学等领域都有广泛的应用。

原点矩是最简单的矩,它是指一个集合中各个元素的某一次幂值之和,例如一个集合的第k次原点矩可以表示为:

M_k = ∑(x_i)^k

其中,x_i是集合中的元素,k是一个正整数。

中心矩是在原点矩的基础上进行中心化得到的矩,它可以更好地反映集合的分布情况。集合的第k次中心矩可以表示为:

μ_k = E[(X-μ)^k]

其中,X是集合中的随机变量,μ是X的期望值,E[ ]表示期望运算符。

标准化矩是一种对中心矩进行标准化的矩,它可以消除单位和比例的影响,使得不同数据集之间的比较更加准确。集合的第k次标准化矩可以表示为:

γ_k = E[(X-μ)^k]/σ^k

其中,σ是X的标准差。

总之,矩是一种非常有用的数学工具,可以用来描述集合的各种特征和分布情况。在实际应用中,不同类型的矩可以用于不同的统计分析和建模方法中,例如方差、协方差、偏度、峰度等。

 总结:

1.协方差和相关系数、矩在统计学中都是比较重要的概念,但它们也有一些重点难点和易错点:

协方差:

  • 重点:协方差可以用于衡量两个随机变量的线性相关程度,它的值可以是正的、负的或者0,具体取决于变量之间的关系。
  • 难点:协方差的值通常需要进行标准化处理才能进行比较,否则不同数据之间的比较并不准确。此外,协方差在计算时可能会受到极端值的影响,需要进行一些异常值处理。
  • 易错点:容易混淆协方差和相关系数的概念和计算方式,尤其是在没有进行标准化处理时容易混淆。

相关系数:

  • 重点:相关系数是一种标准化的协方差,可以用来衡量两个随机变量之间的线性相关程度,取值范围在-1到1之间,绝对值越大表示相关程度越强。
  • 难点:相关系数的计算需要进行标准化处理,需要注意分母不能为0的情况。此外,相关系数只能衡量两个变量之间的线性相关性,如果两个变量之间存在非线性关系,则相关系数可能不准确。
  • 易错点:计算相关系数时容易忽略对变量进行标准化处理,以及在样本量较小的情况下相关系数的可靠性可能不高。

矩:

  • 重点:矩是描述一个集合的各种属性的一种数学工具,可以衡量集合中的元素与某个特定点的距离、分布等特征。
  • 难点:不同类型的矩在实际应用中有不同的计算方式和含义,需要根据具体情况选择合适的矩。此外,矩在计算时可能会受到异常值的影响,需要进行一些异常值处理。
  • 易错点:容易忽略对集合进行中心化或标准化处理而导致结果不准确,同时不同类型的矩容易混淆。

2023/5/7 

2.学到了什么?

协方差、相关系数和矩这些概念的引入涉及了数学家们的许多思想和方法,下面列举几个例子:

1. 矩的引入:矩是描述随机变量的基本工具之一,它描述的是随机变量的各阶矩的值,比如期望、方差、偏度和峰度等。矩的引入是基于数学家们对概率论的深入研究和思考,通过引入矩这个概念,使得随机变量的特征更加明确,也方便了概率论的研究和应用。

2. 协方差的引入:协方差是描述两个随机变量之间关系的一种指标,它是两个随机变量的离均差乘积的期望值。协方差的引入是基于数学家们对随机变量之间关系的研究和思考,通过引入协方差这个概念,可以量化两个随机变量之间的关系,同时也方便了统计学和金融学等领域的应用。

3. 相关系数的引入:相关系数是描述两个随机变量之间关系的一种指标,它是协方差除以两个随机变量的标准差的乘积。相关系数的引入是基于数学家们对协方差的进一步思考和发展,通过引入相关系数这个概念,可以消除两个随机变量的量纲影响,使得不同单位的随机变量之间也可以比较。

4. 线性代数的应用:在处理矩和协方差矩阵等问题时,线性代数中的矩阵和向量等概念和方法得到了广泛应用。数学家们通过将统计学和线性代数相结合,建立了一些重要的统计模型,如主成分分析和线性回归模型等。

总的来说,数学家们在引入协方差、相关系数和矩这些概念时,运用了数学分析、概率论、线性代数和模型建立等多种方法和思想,从而推进了数学和统计学的发展,并为其他学科的研究和应用提供了有力支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值