3.8 方程的近似解

 

 

第八节 方程的近似解

引言

在科学和技术的问题解决中,我们经常会遇到需要求解高次代数方程或其他类型方程的情况。由于直接求出这些方程的精确实根往往具有一定的难度,因此,近似解成为了一个重要的求解手段。

方程近似解的求解步骤

第一步:确定根的隔离区间

求方程的近似解首先要确定根的大致范围。具体操作是确定一个区间 [a, b],保证所求的根是该区间内唯一的实根。这一步骤被称为根的隔离。实际操作中,我们可以通过绘制方程 𝑓(𝑥)=0f(x)=0 的图像来大致确定根的位置,从而得到一个隔离区间。虽然这种方法无法得到高精度的根值,但通常足以确定一个有效的隔离区间。

第二步:逐步提高近似解的精确度

在得到根的隔离区间后,使用区间端点作为初始近似值,逐步提高近似解的精确度,直到满足精确度要求。此过程中,可以使用多种方法,如二分法、切线法和割线法等,通过编写简单的计算程序来在计算机上获得方程的高精度近似解。

常用的求解方法

二分法

二分法是一种非常基本且易于实现的近似求解方法。设 𝑓(𝑥)f(x) 在区间 [a, b] 上连续,并且 𝑓(𝑎)⋅𝑓(𝑏)<0f(a)⋅f(b)<0,表示 𝑓(𝑥)=0f(x)=0 在此区间内有唯一实根。通过不断取区间的中点并测试其符号,逐步缩小包含根的区间,直到满足精确度要求。

例如,求解 𝑥3+1.1𝑥2+0.9𝑥−1.4=0x3+1.1x2+0.9x−1.4=0 的实根近似值:

  1. 初始区间设为 [0, 1],中点 𝜉1=0.5ξ1​=0.5,计算 𝑓(𝜉1)f(ξ1​);
  2. 若 𝑓(𝜉1)f(ξ1​) 与 𝑓(𝑎)f(a) 符号相同,则更新区间为 [𝜉1ξ1​, b],反之则更新为 [a, 𝜉1ξ1​];
  3. 重复以上步骤,直到区间长度小于预定的误差界限,如 10−410−4。

通过上述步骤,我们可以得到一个误差小于指定精度的实根近似值,这个方法虽然简单,但在实际应用中非常有效。

结论

方程的近似解在数学及其应用领域中扮演着重要的角色,特别是在处理那些难以直接求解的复杂方程时。通过合理选择近似方法并逐步提高解的精确度,我们可以有效地解决许多实际问题。在未来的研究和实际应用中,继续优化这些方法并结合计算机技术的发展,将进一步提高方程求解的效率和准确性。

 

 

二、切线法(牛顿法)

切线法,也被广泛称为牛顿法,是一种利用函数曲线的切线来逐步逼近方程根的方法。此方法假设目标函数 𝑓(𝑥)f(x) 在某区间 [𝑎,𝑏][a,b] 上具备连续的一阶和二阶导数,并且 𝑓(𝑎)⋅𝑓(𝑏)<0f(a)⋅f(b)<0 证明了根的存在。此外,𝑓′(𝑥)f′(x) 和 𝑓′′(𝑥)f′′(x) 在区间上保持同号,保证了解的唯一性和迭代过程的收敛性。

切线法的原理

切线法的基本思想是选择一个初始近似值 𝑥0x0​,通常是区间端点之一,然后在该点的函数值处画切线。切线与 𝑥x 轴的交点 𝑥1x1​ 成为下一个近似值。此过程可表示为迭代公式:

这个公式利用当前近似值处的函数值和导数值来计算下一个近似值。重复此过程,直到连续两次迭代的值足够接近,或者 𝑓(𝑥𝑛)f(xn​) 足够接近于零。

示例应用

以方程 𝑥3+1.1𝑥2+0.9𝑥−1.4=0x3+1.1x2+0.9x−1.4=0 为例,已知它在区间 [0, 1] 内有根,根据切线法,我们进行以下步骤:

  1. 确定 𝑓(0)<0f(0)<0 和 𝑓(1)>0f(1)>0,由于 𝑓′(𝑥)f′(x) 和 𝑓′′(𝑥)f′′(x) 在 [0, 1] 上均为正,选择 𝑥0=1x0​=1 作为起始近似值。

  2. 应用迭代公式,计算 𝑥1x1​:

    𝑥1=1−𝑓(1)𝑓′(1)=1−1.63.2+2.2+0.9≈0.738x1​=1−f′(1)f(1)​=1−3.2+2.2+0.91.6​≈0.738

  3. 继续迭代,得到:

    𝑥2=0.738−𝑓(0.738)𝑓′(0.738)≈0.674x2​=0.738−f′(0.738)f(0.738)​≈0.674

    𝑥3=0.674−𝑓(0.674)𝑓′(0.674)≈0.671x3​=0.674−f′(0.674)f(0.674)​≈0.671

  4. 经过几次迭代后,我们发现 𝑥3x3​ 和 𝑥4x4​ 非常接近,计算不能再继续。此时,根据误差要求,已满足条件。

结论

切线法是一种有效且实用的求解方程近似根的方法,特别适用于连续且可导的函数。通过几次迭代,就能以较高的精确度找到方程的根,同时此方法的速度通常比二分法更快,尤其在函数导数信息已知的情况下。

 

三、割线法(弦截法)

割线法是一种不需要直接计算函数导数的数值近似方法,特别适用于函数表达式复杂或导数难以直接计算的情况。此方法通过用两个初始近似值生成的割线来代替牛顿法中的切线,逐步逼近方程的根。

割线法的原理

割线法的迭代公式为:

𝑥𝑛+1=𝑥𝑛−𝑓(𝑥𝑛)𝑥𝑛−𝑥𝑛−1𝑓(𝑥𝑛)−𝑓(𝑥𝑛−1)xn+1​=xn​−f(xn​)f(xn​)−f(xn−1​)xn​−xn−1​​

其中,𝑥0x0​ 和 𝑥1x1​ 是选择的两个初始近似值。该公式的几何意义是通过点 (𝑥𝑛−1,𝑓(𝑥𝑛−1))(xn−1​,f(xn−1​)) 和点 (𝑥𝑛,𝑓(𝑥𝑛))(xn​,f(xn​)) 的割线来逼近方程的根。

示例应用

对于方程 𝑥3+1.1𝑥2+0.9𝑥−1.4=0x3+1.1x2+0.9x−1.4=0,取初始近似值 𝑥0=1x0​=1 和 𝑥1=0.8x1​=0.8 来演示割线法的应用:

  1. 应用割线法的迭代公式,进行计算:

    𝑥2=0.8−𝑓(0.8)⋅(0.8−1)𝑓(0.8)−𝑓(1)x2​=0.8−f(0.8)−f(1)f(0.8)⋅(0.8−1)​

    通过计算 𝑓(0.8)f(0.8) 和 𝑓(1)f(1),我们可以找到 𝑥2x2​ 的值。

  2. 接下来,使用 𝑥1x1​ 和 𝑥2x2​ 作为新的起点继续迭代:

    𝑥3=𝑥2−𝑓(𝑥2)𝑥2−𝑥1𝑓(𝑥2)−𝑓(𝑥1)x3​=x2​−f(x2​)f(x2​)−f(x1​)x2​−x1​​

    类似地,使用 𝑥2x2​ 和 𝑥3x3​ 继续迭代找到 𝑥4x4​。

  3. 继续迭代,直到 𝑥𝑛xn​ 和 𝑥𝑛−1xn−1​ 足够接近或 𝑓(𝑥𝑛)f(xn​) 接近零,满足误差要求(例如小于 10−310−3)。

结论

在例子中,经过几次迭代后 𝑥4x4​ 和 𝑥3x3​ 很接近,接近 0.671。这表明,使用割线法可以有效地逼近方程的根,尤其是在没有方便的导数计算时。该方法虽然可能比牛顿法慢,但它简化了计算过程,特别适用于手动计算或在计算资源有限的环境中。

通过上述步骤,割线法为我们提供了一种在函数的导数难以获得或计算成本较高时,依然能够有效求解方程近似根的方法。

 

 

 

 

  • 16
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值