4.4 有理函数的积分

 

第四节 有理函数的积分

引言

有理函数,即两个多项式的商,是微积分中经常遇到的函数类。掌握有理函数的积分技巧是理解和应用积分学的重要部分。本节将继续探讨有理函数的积分方法,特别是如何将复杂的有理函数通过部分分式法化简,并进行积分。

一、有理函数的分类和基本概念

有理函数是形式为 𝑃(𝑥)𝑄(𝑥)Q(x)P(x)​ 的函数,其中 𝑃(𝑥)P(x) 和 𝑄(𝑥)Q(x) 是多项式,并且假设它们之间没有公因式。根据 𝑃(𝑥)P(x) 和 𝑄(𝑥)Q(x) 的次数关系,有理函数分为两类:

  • 真分式:𝑃(𝑥)P(x) 的次数小于 𝑄(𝑥)Q(x) 的次数。
  • 假分式:𝑃(𝑥)P(x) 的次数大于或等于 𝑄(𝑥)Q(x) 的次数。

对于假分式,我们可以通过多项式除法将其分解为一个多项式和一个真分式的和,这使得积分过程更加直观和简单。

二、部分分式分解

分解方法

真分式可以进一步分解为简单的部分分式,便于积分。部分分式分解的关键在于将分母 𝑄(𝑥)Q(x) 分解为简单多项式的乘积。如果 𝑄(𝑥)Q(x) 可以分解,那么有理函数可以表示为几个更简单分式的和。

实例演示

示例 1

考虑有理函数 𝑥+1(𝑥−3)(𝑥−2)(x−3)(x−2)x+1​:

  1. 首先假设它可以表示为两个部分分式的和:𝐴𝑥−3+𝐵𝑥−2x−3A​+x−2B​
  2. 将上述表达式通分后,与原有理函数的分子比较,解方程组找到 A 和 B 的值。

解得:𝐴=4,𝐵=−3A=4,B=−3 因此,积分变为: ∫𝑥+1(𝑥−3)(𝑥−2) 𝑑𝑥=∫4𝑥−3 𝑑𝑥−∫3𝑥−2 𝑑𝑥=4ln⁡∣𝑥−3∣−3ln⁡∣𝑥−2∣+𝐶∫(x−3)(x−2)x+1​dx=∫x−34​dx−∫x−23​dx=4ln∣x−3∣−3ln∣x−2∣+C

示例 2

考虑复杂一点的函数 

  1. 此函数的分母不可进一步简单分解,所以假设它为𝐴𝑥+𝐵𝑥2+𝑥+1x2+x+1Ax+B​
  2. 通过比较分子,解方程得到 A 和 B 的值。

解得方程组后,可以计算出积分表达式。

示例 3

最后,对于具有重复因式的有理函数

  1. 假设分解为
  2. 解方程组找到 A、B 和 C 的值。

然后进行积分,得到最终结果。

结论

有理函数的积分通过部分分式分解成为了一种标准的、系统的操作方法,这不仅帮助我们简化积分过程,还深化了对代数操作和积分技巧的理解。通过这些方法,我们可以有效地处理各种有理函数的积分问题,从而在解决实际问题中发挥重要作用。

 

 

第四章 不定积分

二、可化为有理函数的积分举例

在解决不定积分问题时,一种常用的方法是通过变量代换将非有理函数的积分转化为有理函数的积分,这样做可以简化计算过程。本节中,我们将通过几个示例来展示这一技术的应用。

示例 4:含有三角函数的积分

考虑积分 ∫tan⁡2𝑥 𝑑𝑥∫tan2xdx。通过利用三角恒等式和变量代换,可以将其转化为有理函数的积分:

变量代换:设 𝑢=tan⁡𝑥u=tanx,则 𝑑𝑢=sec⁡2𝑥 𝑑𝑥du=sec2xdx 或 𝑑𝑥=𝑑𝑢1+𝑢2dx=1+u2du​。

因此,原积分转化为: ∫𝑢2𝑑𝑢1+𝑢2=∫𝑢21+𝑢2 𝑑𝑢∫u21+u2du​=∫1+u2u2​du

这个积分现在是关于 𝑢u 的有理函数,可以通过部分分式分解等方法求解。

示例 5:含有根号的积分

考虑积分 ∫1𝑥⋅𝑥2 𝑑𝑥∫x​⋅x21​dx。通过适当的变量代换,可以简化这个积分:

变量代换:设 𝑢=𝑥u=x​,则 𝑥=𝑢2x=u2 且 𝑑𝑥=2𝑢 𝑑𝑢dx=2udu。

从而,原积分转化为: ∫2𝑢⋅𝑢4 𝑑𝑢=2∫𝑑𝑢𝑢5=−24𝑢4+𝐶=−12𝑥2+𝐶∫u⋅u42​du=2∫u5du​=4u4−2​+C=2x2−1​+C

示例 6:消去根号的策略

考虑积分 ∫𝑥+2 𝑑𝑥∫x+2​dx。通过变量代换去掉根号:

变量代换:设 𝑢=𝑥+2u=x+2​,则 𝑥=𝑢2−2x=u2−2 且 𝑑𝑥=2𝑢 𝑑𝑢dx=2udu。

因此,原积分变为: ∫𝑢⋅2𝑢 𝑑𝑢=2∫𝑢2 𝑑𝑢=2𝑢33+𝐶=2(𝑥+2)33+𝐶∫u⋅2udu=2∫u2du=32u3​+C=32(x+2​)3​+C

示例 7:同时消去两个根号

考虑积分 ∫𝑥(𝑥+𝑥3) 𝑑𝑥∫x​(x​+3x​)dx。可以通过变量代换同时消除两个根号:

变量代换:设 𝑢=𝑥u=x​,则 𝑥=𝑢2x=u2 且 𝑑𝑥=2𝑢 𝑑𝑢dx=2udu。

所以,原积分变为: ∫𝑢(𝑢+𝑢2/3)⋅2𝑢 𝑑𝑢=2∫(𝑢2+𝑢5/3)𝑢 𝑑𝑢=2∫(𝑢3+𝑢8/3) 𝑑𝑢∫u(u+u2/3)⋅2udu=2∫(u2+u5/3)udu=2∫(u3+u8/3)du

这些示例表明,通过变量代换,可以将含有三角函数、根号等非有理函数的积分转化为有理函数的积分,从而利用有理函数积分的方法简化计算过程。这种技巧对于解决复杂的积分问题是非常有用的。

 

 

 

 

 

  • 10
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值