第三节 平面及其方程
引言
在深入探讨平面及其方程之前,了解曲面方程与空间曲线方程的基本概念是必不可少的。这些概念为我们理解更具体的几何形态——如平面和空间直线——提供了理论基础。本节的目标是通过向量工具,在空间直角坐标系中讨论平面和直线这两种最简单的曲面和曲线。
曲面方程与空间曲线方程的概念
曲面方程
在空间解析几何中,曲面被视为点的几何轨迹。任何曲面S都可以通过一个三元方程来描述:
这个方程表明:
- 曲面S上的任何点的坐标必须满足方程 𝐹(𝑥,𝑦,𝑧)=0F(x,y,z)=0。
- 不在曲面S上的任何点的坐标都不满足该方程。
因此,这样的方程被称为曲面S的方程,而曲面S是该方程的几何表现。
空间曲线方程
空间中的曲线可以视为两个曲面的交集。例如,设有两个曲面方程:
这两个曲面的交线即为曲线C。曲线C上的任何点的坐标必须同时满足这两个方程,即:
这样的方程组表达了空间曲线C的位置,因此称之为曲线C的方程。
个人观点
从数学美学的角度来看,曲面和空间曲线方程的定义非常优雅。它们不仅提供了一种理解复杂几何形态的方法,还揭示了数学语言的强大能力,能够用简洁的公式描述复杂的三维空间交互。此外,这些方程的介绍有助于我们更好地理解向量如何作为一种工具被应用于描述空间中的直线和平面,这在工程和物理学中尤为重要。
接下来的内容
在接下来的学习中,我们将具体探讨平面的方程以及如何用向量方法在三维坐标系中表示直线。这不仅将巩固我们对曲面和曲线方程的理解,还将加深我们对空间几何的整体认识。
二、平面的点法式方程
点法式方程的概念
平面的点法式方程是解析几何中描述平面位置的一种重要方法。这种方程通过一个已知点和一个法线向量来确定平面的位置。
法线向量的定义
一个非零向量如果垂直于一个平面,那么这个向量称为该平面的法线向量。任何在平面上的向量都与该法线向量垂直。由此,通过一个点和一个法线向量,我们可以唯一确定一个平面的位置。
方程的推导
假设平面II上有一个已知点 𝑀0(𝑥0,𝑦0,𝑧0)M0(x0,y0,z0) 和一个法线向量 𝑛=(𝐴,𝐵,𝐶)n=(A,B,C)。设 𝑀(𝑥,𝑦,𝑧)M(x,y,z) 是平面II上的任一点。向量 𝑀0𝑀M0M 从点 𝑀0M0 指向点 𝑀M ,其表达式为 (𝑥−𝑥0,𝑦−𝑦0,𝑧−𝑧0)(x−x0,y−y0,z−z0)。因为 𝑀0𝑀M0M 与法线向量 𝑛n 垂直,所以它们的数量积(点积)为零:
𝐴(𝑥−𝑥0)+𝐵(𝑦−𝑦0)+𝐶(𝑧−𝑧0)=0A(x−x0)+B(y−y0)+C(z−z0)=0
这就是平面II的点法式方程,其中 (𝑥,𝑦,𝑧)(x,y,z) 是平面上任一点的坐标。
方程的应用与意义
点法式方程不仅简洁明了,而且实用性强。在实际应用中,如工程设计、物理建模等领域,这种方程形式可以用来快速定义平面的位置和方向。
几何与代数的交汇
点法式方程是几何直观和代数表达的完美结合。它不仅提供了一种算法上的便利,还允许我们从几何的角度更深入地理解空间中的平面。
数学语言的表达力
这种方程形式展示了数学语言描述空间结构的能力。通过简单的代数表达式,我们能够定义无限大的二维平面,这是数学美的一个典范。
结论
平面的点法式方程是向量代数和空间解析几何中的基础概念之一。通过学习和应用这种方程,不仅可以更好地理解数学理论,还可以在科学研究和工程实践中找到广泛的应用。
第八章 向量代数与空间解析几何
四、两平面的夹角
基本概念
两平面的夹角是指这两平面法线向量之间的夹角,这个夹角通常是指它们之间的锐角或直角。通过理解法线向量间的关系,我们可以确定两个平面的相对方位。
数学表达
设有两个平面的法线向量 𝑛1=(𝐴1,𝐵1,𝐶1)n1=(A1,B1,C1) 和 𝑛2=(𝐴2,𝐵2,𝐶2)n2=(A2,B2,C2)。这两平面的夹角 𝜃θ 可以通过计算这两个向量之间的夹角得到。夹角的余弦值由向量的点积与各向量的模长决定:
特殊情况
- 平行或重合:当 𝐴1/𝐴2=𝐵1/𝐵2=𝐶1/𝐶2A1/A2=B1/B2=C1/C2 时,两平面平行或重合。
- 垂直:当 𝐴1𝐴2+𝐵1𝐵2+𝐶1𝐶2=0A1A2+B1B2+C1C2=0 时,两平面垂直。
应用示例
例5:求两平面 𝑥−𝑦+2𝑧−6=0x−y+2z−6=0 和 2𝑥+𝑦+𝑧−5=02x+y+z−5=0 的夹角
解析:
- 确定法线向量 𝑛1=(1,−1,2)n1=(1,−1,2) 和 𝑛2=(2,1,1)n2=(2,1,1)。
- 应用夹角公式计算:
所求夹角 𝜃=cos−1(56)θ=cos−1(65)。
例6:求一平面通过两点 𝑀1(1,1,1)M1(1,1,1) 和 𝑀2(0,1,−1)M2(0,1,−1) 且垂直于平面 𝑥+𝑦+𝑧=0x+y+z=0 的方程
解析:
- 平面 𝑥+𝑦+𝑧=0x+y+z=0 的法线向量为 (1,1,1)(1,1,1)。
- 向量 𝑀1𝑀2→=(−1,0,−2)M1M2=(−1,0,−2)。
- 要求的平面垂直于 (1,1,1)(1,1,1),故法线向量 𝑛n 满足 −𝐴−2𝐶=0−A−2C=0 和 𝐴+𝐵+𝐶=0A+B+C=0。
- 解得 𝐴=−2𝐶,𝐵=3𝐶A=−2C,B=3C。
- 方程 −2(𝑥−1)+3(𝑦−1)−2(𝑧−1)=0−2(x−1)+3(y−1)−2(z−1)=0 简化为 2𝑥−3𝑦−2𝑧=02x−3y−2z=0。
结论
通过理解两平面的法线向量之间的关系,我们不仅能确定它们的夹角,还能从中洞察平面之间的相对位置和方向。这些概念在工程、建筑设计和空间分析等领域中非常有用。