10.4 重积分的应用

 

10.4 重积分的应用

引言

从前面的讨论中,我们了解到,曲顶柱体的体积、平面薄片的质量可以用二重积分计算,空间物体的质量可以用三重积分计算。在本节中,我们将把定积分应用中的元素法推广到重积分的应用中,利用重积分的元素法来讨论重积分在几何和物理上的一些其他应用。

一、曲面的面积

设曲面 SSS 由方程: z=f(x,y)z = f(x, y)z=f(x,y) 给出,其中 DDD 为曲面 SSS 在 xyxyxy 面上的投影区域。函数 f(x,y)f(x, y)f(x,y) 在 DDD 上具有连续偏导数 fx(x,y)f_x(x, y)fx​(x,y) 和 fy(x,y)f_y(x, y)fy​(x,y)。要计算曲面 SSS 的面积 AAA,我们进行如下步骤:

在闭区域 DDD 上任取一直径很小的闭区域 Δω\Delta \omegaΔω(这小闭区域的面积也记作 Δω\Delta \omegaΔω)。在 Δω\Delta \omegaΔω 上取一点 P(x,y)P(x, y)P(x,y),曲面 SSS 上对应地有一点 M(x,y,f(x,y))M(x, y, f(x, y))M(x,y,f(x,y)),点 MMM 在 xyxyxy 面上的投影即点 PPP。点 MMM 处曲面 SSS 的切平面设为 TTT。

以小闭区域 Δω\Delta \omegaΔω 的边界为准线作母线平行于 zzz 轴的柱面,这柱面在曲面 SSS 上截下一小片曲面,在切平面 TTT 上截下一小片平面。由于 Δω\Delta \omegaΔω 的直径很小,切平面 TTT 上的那一小片平面的面积 dAdAdA 可以近似代替相应的那小片曲面的面积。设点 MMM 处曲面 SSS 上的法线(指向朝上)与 zzz 轴所成的角为 γ\gammaγ,则: dA=Δωcos⁡γdA = \frac{\Delta \omega}{\cos \gamma}dA=cosγΔω​

因为:

所以:

这就是曲面 SSS 的面积元素。以它为被积表达式在闭区域 DDD 上积分,得到曲面面积 AAA:

上式也可写成:

对于由 x=g(y,z)x = g(y, z)x=g(y,z) 或 y=h(z,x)y = h(z, x)y=h(z,x) 表示的曲面,可以分别将曲面投影到 yzyzyz 面或 zxzxzx 面(分别记作 DyD_yDy​ 或 ( D_x \)),类似地可以得到:

设 π1\pi_1π1​ 和 π2\pi_2π2​ 是两平面,它们的夹角为 θ\thetaθ(取锐角),在 π1\pi_1π1​ 上的闭区域 DDD 在 π2\pi_2π2​ 上的投影区域为 D0D_0D0​,则 DDD 的面积 AAA 与 D0D_0D0​ 的面积 σ\sigmaσ 之间有以下关系:

事实上,先假定 DDD 是矩形闭区域,且其一边平行于平面 π1\pi_1π1​、π2\pi_2π2​ 的交线 lll,边长为 aaa。另一边长为 bcos⁡θb \cos \thetabcosθ,则 D0D_0D0​ 也是矩形闭区域,且边长分别为 aaa 及 bcos⁡θb \cos \thetabcosθ,从而:

即:

在一般情况下,可以将 DDD 分成上述类型的 mmm 个小矩形闭区域(不计含边界点的不规则部分),则小矩形闭区域的面积 AkA_kAk​ 和其投影区域的面积 σk\sigma_kσk​ 之间符合: ​ 将各小闭区域的直径中的最大值趋于零,取极限便得到:

 

例1:求半径为 aaa 的球的表面积

解:取上半球面方程为: z=a2−x2−y2z = \sqrt{a^2 - x^2 - y^2}z=a2−x2−y2​ 则它在 xyxyxy 面上的投影区域 DDD 为:

因为该函数在闭区域 DDD 上无界,我们不能直接应用曲面面积公式。所以先取区域 D1={(x,y)∣x2+y2≤b2,0<b<a}D_1 = \{(x, y) \mid x^2 + y^2 \leq b^2, 0 < b < a\}D1​={(x,y)∣x2+y2≤b2,0<b<a} 为积分区域,算出相应于 D1D_1D1​ 上的球面面积 A1A_1A1​,后令 b→ab \to ab→a 取 A1A_1A1​ 的极限即可得上半球面的面积。

利用极坐标,得:

于是:

这就是半个球面的面积,因此整个球面的面积为:

例2:地球同步轨道通信卫星的覆盖面积

设有一颗地球同步轨道通信卫星,距地面的高度为 h=36000h = 36000h=36000 km,运行的角速度与地球自转的角速度相同。试计算该通信卫星的覆盖面积与地球表面积的比值(地球半径 R=6400R = 6400R=6400 km)。

解:取地心为坐标原点,地心到通信卫星中心的连线为 zzz 轴,建立坐标系,如图10-40所示。

通信卫星覆盖的曲面 Σ\SigmaΣ 是上半球面被半顶角为 α\alphaα 的圆锥面所截得的部分。Σ\SigmaΣ 的方程为:

于是通信卫星的覆盖面积为:

由于 cos⁡α=RR+h\cos \alpha = \frac{R}{R + h}cosα=R+hR​,代入上式得:

由此得这颗通信卫星的覆盖面积与地球表面积之比为:

代入 h=36000h = 36000h=36000 km 和 R=6400R = 6400R=6400 km,得:

由以上结果可知,卫星覆盖了全球四分之一的面积,故使用四颗相隔90度角度的通信卫星就可以覆盖几乎地球全部表面。

二、质心

先讨论平面薄片的质心。

设在 xyxyxy 平面上有 nnn 个质点,它们分别位于点 (x1,y1)(x_1, y_1)(x1​,y1​), (x2,y2)(x_2, y_2)(x2​,y2​), …, (xn,yn)(x_n, y_n)(xn​,yn​) 处,质量分别为 m1,m2,…,mnm_1, m_2, \dots, m_nm1​,m2​,…,mn​。由力学知道,该质点系的质心的坐标为:为该质点系的总质量,Mx=∑i=1nmixiM_x = \sum_{i=1}^n m_i x_iMx​=∑i=1n​mi​xi​ 和 My=∑i=1nmiyiM_y = \sum_{i=1}^n m_i y_iMy​=∑i=1n​mi​yi​ 分别为该质点系对 yyy 轴和 xxx 轴的静矩。

设有一平面薄片,占有 xyxyxy 面上的闭区域 DDD,在点 (x,y)(x, y)(x,y) 处的面密度为 μ(x,y)\mu(x, y)μ(x,y),假定 μ(x,y)\mu(x, y)μ(x,y) 在 DDD 上连续。现在要找该薄片的质心的坐标。

在闭区域 DDD 上任取一直径很小的闭区域 Δω\Delta \omegaΔω(这小闭区域的面积也记作 \Delta \omega \),\( (x, y) 是这小闭区域上的一个点。因为 Δω\Delta \omegaΔω 的直径很小,且 μ(x,y)\mu(x, y)μ(x,y) 在 DDD 上连续,所以薄片中相应于 Δω\Delta \omegaΔω 的部分的质量近似等于 μ(x,y)Δω\mu(x, y) \Delta \omegaμ(x,y)Δω,这部分质量可近似看做集中在点 (x,y)(x, y)(x,y) 上,于是可写出静矩元素 dMxdM_xdMx​ 及 dMydM_ydMy​:

以这些元素为被积表达式,在闭区域 DDD 上积分,便得:

又由第一节知道,薄片的质量为:

所以,薄片的质心的坐标为:

如果薄片是均匀的,即面密度为常量,那么上式中可把 μ\muμ 提到积分记号外面并从分子、分母中约去,这样便得均匀薄片的质心的坐标为: xˉ=1A∬Dx dω\bar{x} = \frac{1}{A} \iint_D x \, d\omegaxˉ=A1​∬D​xdω yˉ=1A∬Dy dω\bar{y} = \frac{1}{A} \iint_D y \, d\omegayˉ​=A1​∬D​ydω 其中 A=∬DdωA = \iint_D d\omegaA=∬D​dω 为闭区域 DDD 的面积。这时薄片的质心完全由闭区域 DDD 的形状所决定。我们把均匀平面薄片的质心叫做这平面薄片所占的平面图形的形心。因此,平面图形 DDD 的形心的坐标,就可用公式计算。

再按公式:

计算 yˉ\bar{y}yˉ​。由于闭区域 DDD 位于半径为1与半径为2的两圆之间,所以它的面积等于这两个圆的面积之差,即:

再利用极坐标计算积分:

因此:

所求质心是:

例4:求均匀半球体的质心

解:取半球体的对称轴为 zzz 轴,原点取在球心上,又设球半径为 aaa,则半球体所占空间闭区域:

显然,质心在 zzz 轴上,故 x=y=0x = y = 0x=y=0。

再按公式:

其中 V=2πa33V = \frac{2\pi a^3}{3}V=32πa3​ 为半球体的体积。

利用球坐标,得:

于是:

因此,均匀半球体的质心为:

三、转动惯量

先讨论平面薄片的转动惯量。设在 xyxyxy 平面上有 nnn 个质点,它们分别位于点 (x1,y1)(x_1, y_1)(x1​,y1​), (x2,y2)(x_2, y_2)(x2​,y2​), …, (xn,yn)(x_n, y_n)(xn​,yn​) 处,质量分别为 m1,m2,…,mnm_1, m_2, \dots, m_nm1​,m2​,…,mn​。由力学知道,该质点系对于 xxx 轴以及对于 yyy 轴的转动惯量依次为:

设有一薄片,占有 xyxyxy 面上的闭区域 DDD,在点 (x,y)(x, y)(x,y) 处的面密度为 μ(x,y)\mu(x, y)μ(x,y),假定 μ(x,y)\mu(x, y)μ(x,y) 在 DDD 上连续。现在要求该薄片对于 xxx 轴的转动惯量 IxI_xIx​ 以及对于 yyy 轴的转动惯量 IyI_yIy​。

应用元素法。在闭区域 DDD 上任取一直径很小的闭区域 Δω\Delta \omegaΔω(这小闭区域的面积也记作 \Delta \omega \),\( (x, y) 是这小闭区域上的一个点。因为 Δω\Delta \omegaΔω 的直径很小,且 μ(x,y)\mu(x, y)μ(x,y) 在 DDD 上连续,所以薄片中相应于 Δω\Delta \omegaΔω 部分的质量近似等于 μ(x,y)Δω\mu(x, y) \Delta \omegaμ(x,y)Δω,这部分质量可近似看做集中在点 (x,y)(x, y)(x,y) 上,于是可写出薄片对于 xxx 轴以及对于 yyy 轴的转动惯量元素:

以这些元素为被积表达式,在闭区域 DDD 上积分,便得:

例5:求半径为 aaa 的均匀半圆薄片(面密度为常量 μ\muμ)对于其直径边的转动惯量

解:取坐标系如图10-42所示,则薄片所占闭区域为:

所求转动惯量即半圆薄片对于 xxx 轴的转动惯量

由于半圆薄片的质量为:

所以:

例6:求密度为 ρ\rhoρ 的均匀球对于过球心的一条轴 lll 的转动惯量

解:取球心为坐标原点,zzz 轴与轴 lll 重合,又设球的半径为 aaa,则球所占空间闭区域为:

所求转动惯量即球对于 zzz 轴的转动惯量为:

利用球坐标,得:

由于球的质量为:

所以:

因此,均匀球体对于其直径的转动惯量为:

四、引力

下面讨论空间一物体对于物体外一点 P0(x0,y0,z0)P_0 (x_0, y_0, z_0)P0​(x0​,y0​,z0​) 处单位质量的质点的引力问题。

设物体占有空间有界闭区域 Ω,它在点 (x,y,z)(x, y, z)(x,y,z) 处的密度为 ρ(x,y,z)\rho(x, y, z)ρ(x,y,z),并假定 ρ(x,y,z)\rho(x, y, z)ρ(x,y,z) 在 Ω\OmegaΩ 上连续。在物体内任取一直径很小的闭区域 dVdVdV(这闭区域的体积也记作 dVdVdV),(x,y,z)(x, y, z)(x,y,z) 为这一小块中的一点。把这一小块物体的质量 ρdV\rho dVρdV 近似地看做集中在点 (x,y,z)(x, y, z)(x,y,z) 处,于是按两质点间的引力公式,可得这一小块物体对位于 P0(x0,y0,z0)P_0 (x_0, y_0, z_0)P0​(x0​,y0​,z0​) 处的单位质量的质点的引力近似地为:

如果考虑平面薄片对薄片外一点 P0(x0,y0,z)P_0 (x_0, y_0, z)P0​(x0​,y0​,z) 处单位质量的质点的引力,设平面薄片占有 xyxyxy 平面上的有界闭区域 DDD,其面密度为 μ(x,y)\mu(x, y)μ(x,y),那么只要将上式中的密度 ρ(x,y,z)\rho(x, y, z)ρ(x,y,z) 换成面密度 μ(x,y)\mu(x, y)μ(x,y),将 Ω\OmegaΩ 上的三重积分换成 DDD 上的二重积分,就可得到相应的计算公式。

例7:设半径为 RRR 的质量均匀的球占有空间闭区域 Ω={(x,y,z)∣x2+y2+z2≤R2}\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq R^2 \}Ω={(x,y,z)∣x2+y2+z2≤R2}。求它对位于 M0(0,0,a)M_0 (0, 0, a)M0​(0,0,a)(a>Ra > Ra>R)处的单位质量的质点的引力。

解:设球的密度为 ρ0\rho_0ρ0​。由球的对称性及质量分布的均匀性知 Fx=Fy=0F_x = F_y = 0Fx​=Fy​=0,所求引力沿 zzz 轴的分量为:

通过积分,我们可以简化并计算出:

由于球的质量为:

所以:

上述结果表明:质量均匀的球对球外一点的质点的引力如同球的质量集中于球心时两质点间的引力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值