目录
A Survey
Lim, B., & Zohren, S. (2020). Time Series Forecasting With Deep Learning: A Survey. arXiv preprint arXiv:2004.13408.
[TODO]
DeepAR
- Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.07.001
 
Advantages
- 概率预测:得出的是分布预测。方便后续决策优化。
 - 考虑多序列相关性: 使用大量序列的特征进行训练一个global model,之后对每个序列单独应用。解决了一组品,既有爆品也有长尾的问题。即便切分成subgroup还是同样的问题。作者使用log-log图表达power law也就是类似二八定律带来的scale invariance问题。
 - 新品预测
 - 特征工程:自动进行一些数据填充和序列间归一等等(Amazon SageMaker, GluonTS)
 
Algo
一图搞定:使用LSTM网络,产出的是目标z的distribution。其中distributi
深度学习时间序列预测:DeepAR与DeepVAR解析
        
                  
                  
                  
                  
本文是对深度学习在时间序列预测领域的调查,重点介绍了DeepAR和DeepVAR模型。DeepAR利用LSTM网络进行概率预测,考虑多序列相关性,并在Amazon SageMaker和GluonTS中实现特征工程。DeepVAR则在DeepAR基础上引入了低秩高斯协方差矩阵,解决了多序列联合分布的计算复杂性问题。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1056
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            