导数练习习题

本文解析了f(x)=x(x+1)(x+2)…(x+n)的导数在x=0和x=-1处的值,通过设置中间函数g(x)并利用链式法则,展示了如何快速求解这类问题。关键在于识别0乘以任意数的性质,避免直接计算复杂的阶乘。
摘要由CSDN通过智能技术生成

已知 f ( x ) = x ( x + 1 ) ( x + 2 ) … ( x + n ) f(x)=x(x+1)(x+2)\dots(x+n) f(x)=x(x+1)(x+2)(x+n),则 f ′ ( 0 ) = ‾ f'(0)=\underline{\qquad} f(0)= f ′ ( − 1 ) = ‾ f'(-1)=\underline{\qquad} f(1)=

解:
g ( x ) = ( x + 1 ) ( x + 2 ) … ( x + n ) g(x)=(x+1)(x+2)\dots(x+n) g(x)=(x+1)(x+2)(x+n),则 f ( x ) = x ⋅ g ( x ) f(x)=x\cdot g(x) f(x)=xg(x)
∵ f ′ ( x ) = g ( x ) + x ⋅ g ′ ( x ) \because f'(x)=g(x)+x\cdot g'(x) f(x)=g(x)+xg(x)
∴ f ′ ( 0 ) = g ( 0 ) + 0 = g ( 0 ) = n ! \therefore f'(0)=g(0)+0=g(0)=n! f(0)=g(0)+0=g(0)=n!

g ( x ) = x ( x + 2 ) … ( x + n ) g(x)=x(x+2)\dots(x+n) g(x)=x(x+2)(x+n),则 f ( x ) = ( x + 1 ) ⋅ g ( x ) f(x)=(x+1)\cdot g(x) f(x)=(x+1)g(x)
∵ f ′ ( x ) = g ( x ) + ( x + 1 ) g ′ ( x ) \because f'(x)=g(x)+(x+1)g'(x) f(x)=g(x)+(x+1)g(x)
∴ f ′ ( − 1 ) = g ( − 1 ) + 0 = g ( − 1 ) = − ( n − 1 ) ! \therefore f'(-1)=g(-1)+0=g(-1)=-(n-1)! f(1)=g(1)+0=g(1)=(n1)!

总结

对于这一类题, f ′ ( x ) f'(x) f(x)算是很难算出来的,所以我们需要利用 [ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x),将题目中给定的自变量的值在求导的过程中得到一个 0 ⋅ A 0\cdot A 0A的部分,然后后面一部分就不需要计算了,这样就能更快地解决问题。

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值