导数大题练习

已知函数 f ( x ) = x ( 1 − ln ⁡ x ) f(x)=x(1-\ln x) f(x)=x(1lnx)
(1)讨论 f ( x ) f(x) f(x)的单调性
(2)设 a , b a,b a,b为两个不相等的正数,且 b ln ⁡ a − a ln ⁡ b = a − b b\ln a-a\ln b=a-b blnaalnb=ab
\qquad 求证: 2 < 1 a + 1 b < e 2<\dfrac 1a+\dfrac 1b<e 2<a1+b1<e

解:
\quad (1) f ( x ) f(x) f(x)定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) f ′ ( x ) = − ln ⁡ x f'(x)=-\ln x f(x)=lnx

\qquad x ∈ ( 0 , 1 ) x\in(0,1) x(0,1)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0
\qquad x = 1 x=1 x=1时, f ′ ( x ) = 0 f'(x)=0 f(x)=0
\qquad x ∈ ( 1 , + ∞ ) x\in(1,+\infty) x(1,+)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0

\qquad 所以单调递增区间为 ( 0 , 1 ] (0,1] (0,1],单调递减区间为 [ 1 , + ∞ ) [1,+\infty) [1,+)

\quad (2) b ln ⁡ a − a ln ⁡ b = a − b b\ln a-a\ln b=a-b blnaalnb=ab整理得 ln ⁡ a + 1 a = ln ⁡ b + 1 b \dfrac{\ln a+1}{a}=\dfrac{\ln b+1}{b} alna+1=blnb+1,即 f ( 1 a ) = f ( 1 b ) f(\dfrac 1a)=f(\dfrac 1b) f(a1)=f(b1)

\qquad x 1 = 1 a x_1=\dfrac 1a x1=a1 x 2 = 1 b x_2=\dfrac 1b x2=b1,不妨设 x 1 < x 2 x_1<x_2 x1<x2

\qquad 由(1)得 f ( x ) f(x) f(x) ( 0 , 1 ] (0,1] (0,1]单调递增,在 [ 1 , + ∞ ) [1,+\infty) [1,+)单调递减

\qquad 所以 x 1 ∈ ( 0 , 1 ) , x 2 ∈ ( 1 , + ∞ ) x_1\in (0,1),x_2\in(1,+\infty) x1(0,1),x2(1,+)

\qquad ①证明 1 a + 1 b > 2 \dfrac 1a+\dfrac 1b>2 a1+b1>2

\qquad F ( x ) = f ( x ) − f ( 2 − x ) F(x)=f(x)-f(2-x) F(x)=f(x)f(2x)

\qquad F ′ ( x ) = − ln ⁡ x − ln ⁡ ( 2 − x ) = − ln ⁡ x ( 2 − x ) F'(x)=-\ln x-\ln(2-x)=-\ln x(2-x) F(x)=lnxln(2x)=lnx(2x)

\qquad x ∈ ( 0 , 1 ) x\in(0,1) x(0,1)时, F ′ ( x ) < 0 F'(x)<0 F(x)<0,即 F ( x ) F(x) F(x)单调递增

F ( x ) < F ( 1 ) = 0 \qquad F(x)<F(1)=0 F(x)<F(1)=0,即 f ( 2 − x ) > f ( x ) f(2-x)>f(x) f(2x)>f(x) f ( 2 − x 1 ) > f ( x 1 ) = f ( x 2 ) f(2-x_1)>f(x_1)=f(x_2) f(2x1)>f(x1)=f(x2)

∵ 1 < 2 − x 1 < 2 \qquad \because 1<2-x_1<2 1<2x1<2 f ( x ) f(x) f(x) [ 1 , + ∞ ) [1,+\infty) [1,+)上单调递减

∴ 2 − x 1 < x 2 \qquad \therefore 2-x_1<x_2 2x1<x2,得 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2,即 1 a + 1 b > 2 \dfrac 1a+\dfrac 1b>2 a1+b1>2

\qquad ②证明 1 a + 1 b < e \dfrac 1a+\dfrac 1b<e a1+b1<e

\qquad F ( x ) = f ( x ) − f ( e − x ) = 2 x − e + ( e − x ) ln ⁡ ( e − x ) − x ln ⁡ x F(x)=f(x)-f(e-x)=2x-e+(e-x)\ln(e-x)-x\ln x F(x)=f(x)f(ex)=2xe+(ex)ln(ex)xlnx

g ( x ) = 2 x − e + ( e − x ) ln ⁡ ( e − x ) \qquad \quad g(x)=2x-e+(e-x)\ln(e-x) g(x)=2xe+(ex)ln(ex)

\qquad x ∈ ( 0 , 1 ) x\in(0,1) x(0,1)时, g ′ ( x ) = 1 − ln ⁡ ( e − x ) > 0 g'(x)=1-\ln(e-x)>0 g(x)=1ln(ex)>0

\qquad 所以 g ( x ) g(x) g(x)单调递增,得 g ( x ) > g ( 0 ) = 0 g(x)>g(0)=0 g(x)>g(0)=0

∵ \qquad \because x ∈ ( 0 , 1 ) x\in(0,1) x(0,1)时, − x ln ⁡ x > 0 -x\ln x>0 xlnx>0

∴ F ( x ) = g ( x ) − x ln ⁡ x > 0 \qquad \therefore F(x)=g(x)-x\ln x>0 F(x)=g(x)xlnx>0

\qquad f ( x ) > f ( e − x ) f(x)>f(e-x) f(x)>f(ex) f ( e − x 1 ) < f ( x 1 ) = f ( x 2 ) f(e-x_1)<f(x_1)=f(x_2) f(ex1)<f(x1)=f(x2)

∵ e − 1 < e − x 1 < e \qquad \because e-1<e-x_1<e e1<ex1<e f ( x ) f(x) f(x) [ 1 , + ∞ ) [1,+\infty) [1,+)上单调递减,且 f ( e − x 1 ) < f ( x 1 ) = f ( x 2 ) f(e-x_1)<f(x_1)=f(x_2) f(ex1)<f(x1)=f(x2)

∴ e − x 1 > x 2 \qquad \therefore e-x_1>x_2 ex1>x2,得 x 1 + x 2 < e x_1+x_2<e x1+x2<e,即 1 a + 1 b < e \dfrac 1a+\dfrac 1b<e a1+b1<e

\qquad 综上所述, 2 < 1 a + 1 b < e 2<\dfrac 1a+\dfrac 1b<e 2<a1+b1<e


总结

以上是对这段时间学的内容的练习。解题过程并不严谨,但解题思路值得参考。若有错误,欢迎大家提出。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值