设 x 1 x 2 > 0 x_1x_2>0 x1x2>0,证明:在 x 1 x_1 x1和 x 2 x_2 x2之间存在一点 ξ \xi ξ,使得:
x 1 e x 2 − x 2 e x 1 = ( 1 − ξ ) e ξ ( x 1 − x 2 ) x_1e^{x_2}-x^2e^{x_1}=(1-\xi)e^{\xi}(x_1-x_2) x1ex2−x2ex1=(1−ξ)eξ(x1−x2)
解:
\qquad 令 f ( x ) = 1 x e x , g ( x ) = 1 x f(x)=\dfrac 1x e^x,g(x)=\dfrac 1x f(x)=x1ex,g(x)=x