柯西中值定理习题

柯西中值定理

x 1 x 2 > 0 x_1x_2>0 x1x2>0,证明:在 x 1 x_1 x1 x 2 x_2 x2之间存在一点 ξ \xi ξ,使得:

x 1 e x 2 − x 2 e x 1 = ( 1 − ξ ) e ξ ( x 1 − x 2 ) x_1e^{x_2}-x^2e^{x_1}=(1-\xi)e^{\xi}(x_1-x_2) x1ex2x2ex1=(1ξ)eξ(x1x2)

解:
\qquad f ( x ) = 1 x e x , g ( x ) = 1 x f(x)=\dfrac 1x e^x,g(x)=\dfrac 1x f(x)=x1ex,g(x)=x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值