树上启发式合并(dsu on tree)

dsu on tree

dsu \text{dsu} dsu一般指 disjoint set union \text{disjoint set union} disjoint set union,即并查集。 dsu on tree \text{dsu on tree} dsu on tree指树上合并与查询操作,但它的实现和普通的并查集并无关联,两者的共同点仅仅在于都能合并集合和查询而已。

dsu on tree \text{dsu on tree} dsu on tree,可以称为树上启发式合并,是一种巧妙的暴力。用一个全局数组存储结果,对于每棵子树,有以下操作:

  • 先遍历轻儿子,处理完轻儿子后将数组清零(不能用 m e m s e t memset memset,要再遍历一次来清零)
  • 遍历重儿子,遍历完不用清零,再遍历,将轻儿子合并到重儿子上去,其合并结果存储于全局数组
  • 用此时的全局数组来计算父亲

重儿子: 对于一个非叶节点 u u u,设 v v v u u u的儿子,且以 v v v为根的子树包含的节点比以 u u u的其他儿子为根的子树包含的节点都多,则称 v v v u u u的重儿子

轻儿子: 对于一个非叶节点 u u u,在 u u u的各个儿子中,除了重儿子,都是轻儿子

重边: 重儿子连向父亲的边

轻边: 轻儿子连向父亲的边

重链: 若干条重边连接而成的链

运用树上启发式合并,可以将时间复杂度降至 O ( n log ⁡ n ) O(n\log n) O(nlogn)

为什么这样做时间复杂度就能降为 O ( n log ⁡ n ) O(n\log n) O(nlogn)呢?

根据轻重链划分的思想,任意一条从某个节点到根的路径上轻边的数量不超过 log ⁡ n \log n logn条,而重链是被轻边分隔的,所以数量也不超过 log ⁡ n \log n logn条。每棵子树到父亲的边为轻边才需要做一次 p t pt pt操作,所以最多做 log ⁡ n \log n logn次。每次 p t pt pt操作可以看作是轻儿子向重儿子的合并操作。每个节点最多合并 log ⁡ n \log n logn次,所以时间复杂度为 O ( n log ⁡ n ) O(n\log n) O(nlogn)


例题

传送门

给一棵根为1的树,每次询问子树颜色种类数。

先看一下暴力怎么做。

code

void pt(int u,int fa,int fl){
	cnt[a[u]]+=fl;
	if(fl==1&&cnt[a[u]]==1) ++now;
	if(fl==-1&&cnt[a[u]]==0) --now;
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		pt(d[i],u,fl);
	}
}
void dfs(int u,int fa){
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		dfs(d[i],u);
	}
	pt(u,fa,1);
	ans[u]=now;
	pt(u,fa,-1);
}

时间复杂度为 O ( n 2 ) O(n^2) O(n2)

然后来看看树上启发式合并的代码。

code

void dfs1(int u,int fa){
	siz[u]=1;
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		dfs1(d[i],u);
		siz[u]+=siz[d[i]];
		if(siz[d[i]]>siz[son[u]]) son[u]=d[i];
	}
}
void pt(int u,int fa,int fl){
	cnt[a[u]]+=fl;
	if(fl==1&&cnt[a[u]]==1) ++now;
	if(fl==-1&&cnt[a[u]]==0) --now;
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		pt(d[i],u,fl);
	}
}
void dfs2(int u,int fa){
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa||d[i]==son[u]) continue;
		dfs2(d[i],u);
		pt(d[i],u,-1);
	}
	if(son[u]) dfs2(son[u],u);
	++cnt[a[u]];
	if(cnt[a[u]]==1) ++now;
	for(int i=r[u];i;i=l[i]){
		if(d[i]!=fa&&d[i]!=son[u]) pt(d[i],u,1);
	}
	ans[u]=now;
}

其中dfs1是用来求重儿子的,dfs2就用来求答案。在遍历各节点的过程中,我们只对轻儿子作清零操作,重儿子求完再遍历各个轻儿子来求父亲的答案。这样就能将时间复杂度降为 O ( n log ⁡ n ) O(n\log n) O(nlogn)了。

完整代码如下。

code

#include<bits/stdc++.h>
using namespace std;
int n,m,x,y,tot=0,now=0,a[100005],d[200005],l[200005],r[200005],siz[100005],son[100005],cnt[100005],ans[100005];
void add(int xx,int yy){
	l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
void dfs1(int u,int fa){
	siz[u]=1;
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		dfs1(d[i],u);
		siz[u]+=siz[d[i]];
		if(siz[d[i]]>siz[son[u]]) son[u]=d[i];
	}
}
void pt(int u,int fa,int fl){
	cnt[a[u]]+=fl;
	if(fl==1&&cnt[a[u]]==1) ++now;
	if(fl==-1&&cnt[a[u]]==0) --now;
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa) continue;
		pt(d[i],u,fl);
	}
}
void dfs2(int u,int fa){
	for(int i=r[u];i;i=l[i]){
		if(d[i]==fa||d[i]==son[u]) continue;
		dfs2(d[i],u);
		pt(d[i],u,-1);
	}
	if(son[u]) dfs2(son[u],u);
	++cnt[a[u]];
	if(cnt[a[u]]==1) ++now;
	for(int i=r[u];i;i=l[i]){
		if(d[i]!=fa&&d[i]!=son[u]) pt(d[i],u,1);
	}
	ans[u]=now;
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		add(x,y);add(y,x);
	}
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	dfs1(1,0);
	dfs2(1,0);
	scanf("%d",&m);
	while(m--){
		scanf("%d",&x);
		printf("%d\n",ans[x]);
	}
	return 0;
}
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值