前置知识:泰勒展开
令 a = 0.1 e 0.1 , b = 1 9 , c = − ln ( 0.9 ) a=0.1e^{0.1},b=\dfrac 19,c=-\ln(0.9) a=0.1e0.1,b=91,c=−ln(0.9),则( \qquad )。
A . a < b < c B . c < b < a C . c < a < b D . a < c < b A. a<b<c \qquad B. c<b<a \qquad C.c<a<b \qquad D. a<c<b A.a<b<cB.c<b<aC.c<a<bD.a<c<b
解:
e
x
\qquad e^x
ex带皮亚诺余项的
3
3
3阶麦克劳林展开为
e
x
=
1
+
x
+
1
2
x
2
+
1
6
x
3
+
o
(
x
3
)
e^x=1+x+\dfrac 12x^2+\dfrac 16x^3+o(x^3)
ex=1+x+21x2+61x3+o(x3)
\qquad
则
e
0.1
≈
1
+
0.1
+
1
2
×
0.01
+
1
6
×
0.001
e^{0.1}\approx1+0.1+\dfrac 12\times 0.01+\dfrac 16\times 0.001
e0.1≈1+0.1+21×0.01+61×0.001
\qquad 所以 e 0.1 ≈ 1.10517 e^{0.1}\approx 1.10517 e0.1≈1.10517, a = 0.1 e 0.1 ≈ 0.110517 a=0.1e^{0.1}\approx 0.110517 a=0.1e0.1≈0.110517
b = 1 9 ≈ 0.111111 \qquad b=\dfrac 19\approx 0.111111 b=91≈0.111111
ln
(
1
+
x
)
\qquad \ln(1+x)
ln(1+x)带皮亚诺余项的
3
3
3阶麦克劳林展开为
ln
(
1
+
x
)
=
x
−
x
2
2
+
x
3
3
+
o
(
x
3
)
\ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}+o(x^3)
ln(1+x)=x−2x2+3x3+o(x3)
\qquad
则
ln
(
0.9
)
=
ln
[
1
+
(
−
0.1
)
]
≈
−
0.1
−
1
2
×
0.01
−
1
3
×
0.001
\ln(0.9)=\ln[1+(-0.1)]\approx -0.1-\dfrac 12\times 0.01-\dfrac 13\times 0.001
ln(0.9)=ln[1+(−0.1)]≈−0.1−21×0.01−31×0.001
\qquad 所以 c = − ln ( 0.9 ) = 0.105333 c=-\ln(0.9)=0.105333 c=−ln(0.9)=0.105333
\qquad 由此可得 c < a < b c<a<b c<a<b,所以选 C C C。
总结
用泰勒展开来做这类题十分方便,而且对于选择题来说,泰勒展开的过程呈现在草稿纸上,所以不需要像上面那样写得那么清晰。只要熟练地掌握了泰勒展开,这一类题都可以轻轻松松地解决。