泰勒展开练习

前置知识:泰勒展开

a = 0.1 e 0.1 , b = 1 9 , c = − ln ⁡ ( 0.9 ) a=0.1e^{0.1},b=\dfrac 19,c=-\ln(0.9) a=0.1e0.1,b=91,c=ln(0.9),则( \qquad )。

A . a < b < c B . c < b < a C . c < a < b D . a < c < b A. a<b<c \qquad B. c<b<a \qquad C.c<a<b \qquad D. a<c<b A.a<b<cB.c<b<aC.c<a<bD.a<c<b

解:
e x \qquad e^x ex带皮亚诺余项的 3 3 3阶麦克劳林展开为
e x = 1 + x + 1 2 x 2 + 1 6 x 3 + o ( x 3 ) e^x=1+x+\dfrac 12x^2+\dfrac 16x^3+o(x^3) ex=1+x+21x2+61x3+o(x3)

\qquad
e 0.1 ≈ 1 + 0.1 + 1 2 × 0.01 + 1 6 × 0.001 e^{0.1}\approx1+0.1+\dfrac 12\times 0.01+\dfrac 16\times 0.001 e0.11+0.1+21×0.01+61×0.001

\qquad 所以 e 0.1 ≈ 1.10517 e^{0.1}\approx 1.10517 e0.11.10517 a = 0.1 e 0.1 ≈ 0.110517 a=0.1e^{0.1}\approx 0.110517 a=0.1e0.10.110517

b = 1 9 ≈ 0.111111 \qquad b=\dfrac 19\approx 0.111111 b=910.111111

ln ⁡ ( 1 + x ) \qquad \ln(1+x) ln(1+x)带皮亚诺余项的 3 3 3阶麦克劳林展开为
ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) \ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}+o(x^3) ln(1+x)=x2x2+3x3+o(x3)

\qquad
ln ⁡ ( 0.9 ) = ln ⁡ [ 1 + ( − 0.1 ) ] ≈ − 0.1 − 1 2 × 0.01 − 1 3 × 0.001 \ln(0.9)=\ln[1+(-0.1)]\approx -0.1-\dfrac 12\times 0.01-\dfrac 13\times 0.001 ln(0.9)=ln[1+(0.1)]0.121×0.0131×0.001

\qquad 所以 c = − ln ⁡ ( 0.9 ) = 0.105333 c=-\ln(0.9)=0.105333 c=ln(0.9)=0.105333

\qquad 由此可得 c < a < b c<a<b c<a<b,所以选 C C C


总结

用泰勒展开来做这类题十分方便,而且对于选择题来说,泰勒展开的过程呈现在草稿纸上,所以不需要像上面那样写得那么清晰。只要熟练地掌握了泰勒展开,这一类题都可以轻轻松松地解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值