前置知识
前言
由微分的定义和介绍可得,如果
f
′
(
x
0
)
f'(x_0)
f′(x0)存在,则当
x
→
x
0
x\rightarrow x_0
x→x0时,有
f
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
o
(
x
−
x
0
)
f(x)=f(x_0)+f'(x_0)(x-x_0)+o(x-x_0)
f(x)=f(x0)+f′(x0)(x−x0)+o(x−x0)
这表明在
x
0
x_0
x0点附近
f
(
x
)
f(x)
f(x)可以用一个一阶多项式来逼近:
P
1
(
x
)
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
P_1(x)=f(x_0)+f'(x_0)(x-x_0)
P1(x)=f(x0)+f′(x0)(x−x0)
误差为 o ( x − x 0 ) o(x-x_0) o(x−x0)。从几何上看,其实就是用曲线 y = f ( x ) y=f(x) y=f(x)过点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))的切线来逼近曲线。然而这样的逼近在许多情况下是不够的。为了提高精度,我们可以用一个多项式在 x 0 x_0 x0点附近来逼近 f ( x ) f(x) f(x),这就是泰勒公式。
泰勒公式
若函数
f
f
f在点
x
0
x_0
x0处有
n
n
n阶导数时,我们可以用一个
n
n
n次多项式来逼近
f
(
x
)
f(x)
f(x),那么我们可以设这个多项式为:
P
n
(
x
)
=
a
0
+
a
1
(
x
−
x
0
)
+
a
2
(
x
−
x
0
)
2
+
⋯
+
a
n
(
x
−
x
0
)
n
P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\dots+a_n(x-x_0)^n
Pn(x)=a0+a1(x−x0)+a2(x−x0)2+⋯+an(x−x0)n
接下来我们要求 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an的值。
因为我们要用 P n ( x ) P_n(x) Pn(x)来逼近 f ( x ) f(x) f(x),所以在 x = x 0 x=x_0 x=x0时, P n ( x ) = f ( x 0 ) P_n(x)=f(x_0) Pn(x)=f(x0)。也就是说, a 0 = f ( x 0 ) a_0=f(x_0) a0=f(x0).
接下来我们来求 a 1 a_1 a1。因为要逼近 f ( x ) f(x) f(x),所以当 x = x 0 x=x_0 x=x0时, P n ′ ( x ) = f ′ ( x 0 ) P_n'(x)=f'(x_0) Pn′(x)=f′(x0),也就是 a 1 = f ′ ( x 0 ) a_1=f'(x_0) a1=f′(x0).
以此类推,对于
k
=
1
,
2
,
…
,
n
k=1,2,\dots,n
k=1,2,…,n,
a
k
=
f
(
k
)
(
x
0
)
k
!
a_k=\dfrac{f^{(k)}(x_0)}{k!}
ak=k!f(k)(x0)。于是,我们就可以得到
P
n
(
x
)
P_n(x)
Pn(x)了。
P
n
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
P_n(x)=\sum\limits_{k=0}^n\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k
Pn(x)=k=0∑nk!f(k)(x0)(x−x0)k
称上式为 f f f在 x 0 x_0 x0处的 n n n阶泰勒多项式。
以上是一种理解方法,但并不严谨,仅供参考。
皮亚诺余项
设函数
f
f
f在
x
0
x_0
x0处有
n
n
n阶导数,则当
x
→
x
0
x\rightarrow x_0
x→x0时,
f
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
+
o
(
(
x
−
x
0
)
n
)
f(x)=\sum\limits_{k=0}^n\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+o((x-x_0)^n)
f(x)=k=0∑nk!f(k)(x0)(x−x0)k+o((x−x0)n)
证明
\qquad
令
R
n
(
x
)
=
f
(
x
)
−
P
n
(
x
)
R_n(x)=f(x)-P_n(x)
Rn(x)=f(x)−Pn(x),由于
f
f
f在点
x
0
x_0
x0处有
n
n
n阶导数,所以
f
(
x
)
f(x)
f(x)与
R
n
(
x
)
R_n(x)
Rn(x)在某个邻域内有
n
−
1
n-1
n−1阶导数,并且
R
n
(
m
)
(
x
)
=
f
(
m
)
(
x
)
−
∑
k
=
m
n
f
(
k
)
(
x
0
)
(
k
−
m
)
!
(
x
−
x
0
)
(
k
−
m
)
(
m
=
0
,
1
,
2
,
…
,
n
−
1
)
R_n^{(m)}(x)=f^{(m)}(x)-\sum\limits_{k=m}^n\dfrac{f^{(k)}(x_0)}{(k-m)!}(x-x_0)^{(k-m)} \qquad (m=0,1,2,\dots,n-1)
Rn(m)(x)=f(m)(x)−k=m∑n(k−m)!f(k)(x0)(x−x0)(k−m)(m=0,1,2,…,n−1)
有上式可得 R n ( x 0 ) = R n ′ ( x 0 ) = ⋯ = R n ( n − 1 ) ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=\cdots=R_n^{(n-1)}(x_0)=0 Rn(x0)=Rn′(x0)=⋯=Rn(n−1)(x0)=0,于是我们使用 n − 1 n-1 n−1次洛必达法则可得
lim x → x 0 R n ( x ) ( x − x 0 ) n = lim x → x 0 R n ′ ( x ) n ( x − x 0 ) n − 1 = ⋯ = lim x → x 0 R n ( n − 1 ) ( x ) n ! ( x − x 0 ) \qquad \lim\limits_{x\rightarrow x_0}\dfrac{R_n(x)}{(x-x_0)^n}=\lim\limits_{x\rightarrow x_0}\dfrac{R_n'(x)}{n(x-x_0)^{n-1}}=\cdots=\lim\limits_{x\rightarrow x_0}\dfrac{R_n^{(n-1)}(x)}{n!(x-x_0)} x→x0lim(x−x0)nRn(x)=x→x0limn(x−x0)n−1Rn′(x)=⋯=x→x0limn!(x−x0)Rn(n−1)(x)
= lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) − f ( n ) ( x 0 ) ( x − x 0 ) n ! ( x − x 0 ) \qquad \qquad \qquad \qquad \quad =\lim\limits_{x\rightarrow x_0}\dfrac{f^{(n-1)}(x)-f^{(n-1)}(x_0)-f^{(n)}(x_0)(x-x_0)}{n!(x-x_0)} =x→x0limn!(x−x0)f(n−1)(x)−f(n−1)(x0)−f(n)(x0)(x−x0)
= 1 n ! lim x → x 0 [ f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 − f ( n ) ( x 0 ) ] \qquad \qquad \qquad \qquad \quad =\dfrac{1}{n!}\lim\limits_{x\rightarrow x_0}[\dfrac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}-f^{(n)}(x_0)] =n!1x→x0lim[x−x0f(n−1)(x)−f(n−1)(x0)−f(n)(x0)]
= 1 n ! lim x → x 0 [ f ( n ) ( x 0 ) − f ( n ) ( x 0 ) ] = 0 \qquad \qquad \qquad \qquad \quad =\dfrac{1}{n!}\lim\limits_{x\rightarrow x_0}[f^{(n)}(x_0)-f^{(n)}(x_0)]=0 =n!1x→x0lim[f(n)(x0)−f(n)(x0)]=0
所以当
x
→
x
0
x\rightarrow x_0
x→x0时,
R
n
(
x
)
=
o
(
(
x
−
x
0
)
n
)
R_n(x)=o((x-x_0)^n)
Rn(x)=o((x−x0)n),即可得
f
(
x
)
=
∑
k
=
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
+
o
(
(
x
−
x
0
)
n
)
f(x)=\sum\limits_{k=0}^n\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+o((x-x_0)^n)
f(x)=k=0∑nk!f(k)(x0)(x−x0)k+o((x−x0)n)
R n ( x ) R_n(x) Rn(x)称为余项,由 R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((x−x0)n)表达的余项称为皮亚诺余项。上式称为 f f f在 x 0 x_0 x0处带皮亚诺余项的 n n n阶泰勒公式。
拉格朗日余项
设函数
f
f
f在区间
[
a
,
b
]
[a,b]
[a,b]上
n
+
1
n+1
n+1阶可导,
x
x
x和
x
0
x_0
x0为
[
a
,
b
]
[a,b]
[a,b]中任意两点,
P
n
P_n
Pn为
f
f
f在
x
0
x_0
x0处的
n
n
n阶泰勒多项式,则存在
ξ
\xi
ξ介于
x
x
x和
x
0
x_0
x0之间,使得
R
n
(
x
)
=
f
(
x
)
−
P
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x)=f(x)-P_n(x)=\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Rn(x)=f(x)−Pn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1
证明
由皮亚诺余项的证明,同理可得 R n ( x 0 ) = R n ′ ( x 0 ) = ⋯ = R n ( n ) ( x 0 ) = 0 R_n(x_0)=R_n'(x_0)=\cdots=R_n^{(n)}(x_0)=0 Rn(x0)=Rn′(x0)=⋯=Rn(n)(x0)=0.对 R n ( x ) R_n(x) Rn(x)和 g ( x ) = ( x − x 0 ) n + 1 g(x)=(x-x_0)^{n+1} g(x)=(x−x0)n+1在闭区间 [ x , x 0 ] [x,x_0] [x,x0](或 [ x 0 , x ] [x_0,x] [x0,x])上使用 n + 1 n+1 n+1次柯西中值定理可得
R n ( x ) ( x − x 0 ) n + 1 = R n ( x ) − R n ( x 0 ) ( x − x 0 ) n + 1 − ( x 0 − x 0 ) n + 1 = R n ′ ( ξ 1 ) ( n + 1 ) ( ξ 1 − x 0 ) n \qquad \dfrac{R_n(x)}{(x-x_0)^{n+1}}=\dfrac{R_n(x)-R_n(x_0)}{(x-x_0)^{n+1}-(x_0-x_0)^{n+1}}=\dfrac{R_n'(\xi_1)}{(n+1)(\xi_1-x_0)^n} (x−x0)n+1Rn(x)=(x−x0)n+1−(x0−x0)n+1Rn(x)−Rn(x0)=(n+1)(ξ1−x0)nRn′(ξ1)
= 1 n + 1 ⋅ R n ′ ( ξ 1 ) − R n ′ ( x 0 ) ( ξ 1 − x 0 ) n − ( x 0 − x 0 ) n = 1 n + 1 ⋅ R n ′ ′ ( ξ 2 ) n ( ξ 2 − x 0 ) n − 1 \qquad \qquad \qquad \qquad =\dfrac{1}{n+1}\cdot\dfrac{R_n'(\xi_1)-R_n'(x_0)}{(\xi_1-x_0)^n-(x_0-x_0)^n}=\dfrac{1}{n+1}\cdot\dfrac{R_n''(\xi_2)}{n(\xi_2-x_0)^{n-1}} =n+11⋅(ξ1−x0)n−(x0−x0)nRn′(ξ1)−Rn′(x0)=n+11⋅n(ξ2−x0)n−1Rn′′(ξ2)
= ⋯ = R n ( n ) ( ξ n ) ( n + 1 ) ! ( ξ n − x 0 ) \qquad \qquad \qquad \qquad =\cdots=\dfrac{R_n^{(n)}(\xi_n)}{(n+1)!(\xi_n-x_0)} =⋯=(n+1)!(ξn−x0)Rn(n)(ξn)
= f ( n ) ( ξ n ) − f ( n ) ( x 0 ) ( n + 1 ) ! ( ξ n − x 0 ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! \qquad \qquad \qquad \qquad =\dfrac{f^{(n)}(\xi_n)-f^{(n)}(x_0)}{(n+1)!(\xi_n-x_0)}=\dfrac{f^{(n+1)}(\xi)}{(n+1)!} =(n+1)!(ξn−x0)f(n)(ξn)−f(n)(x0)=(n+1)!f(n+1)(ξ)
其中
x
<
ξ
1
<
ξ
2
<
⋯
<
ξ
n
<
ξ
<
x
0
x<\xi_1<\xi_2<\cdots<\xi_n<\xi<x_0
x<ξ1<ξ2<⋯<ξn<ξ<x0(或
x
0
<
ξ
<
ξ
n
<
⋯
<
ξ
2
<
ξ
1
<
x
x_0<\xi<\xi_n<\cdots<\xi_2<\xi_1<x
x0<ξ<ξn<⋯<ξ2<ξ1<x)。得证
R
n
(
x
)
=
f
(
x
)
−
P
n
(
x
)
=
f
(
n
+
1
)
(
ξ
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x)=f(x)-P_n(x)=\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}
Rn(x)=f(x)−Pn(x)=(n+1)!f(n+1)(ξ)(x−x0)n+1
上式称为拉格朗日余项,相应的泰勒公式称为 f f f在 x 0 x_0 x0处带拉格朗日余项的 n n n阶泰勒公式。
麦克劳林公式
当 x 0 = 0 x_0=0 x0=0时, f f f在 x 0 = 0 x_0=0 x0=0点的 n n n阶泰勒公式也称为 f f f的 n n n阶麦克劳林公式。
常见的麦克劳林公式
- e x = 1 + x + 1 2 ! x 2 + ⋯ 1 n ! x n + o ( x n ) e^x=1+x+\dfrac{1}{2!}x^2+\cdots\dfrac{1}{n!}x^n+o(x^n) ex=1+x+2!1x2+⋯n!1xn+o(xn)
- sin x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\dfrac{1}{3!}x^3+\cdots+\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}+o(x^{2n+1}) sinx=x−3!1x3+⋯+(2n+1)!(−1)nx2n+1+o(x2n+1)
- cos x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + ⋯ + ( − 1 ) n ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4+\cdots+\dfrac{(-1)^n}{(2n)!}x^{2n}+o(x^{2n}) cosx=1−2!1x2+4!1x4+⋯+(2n)!(−1)nx2n+o(x2n)
- ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 n x n + o ( x n ) \ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+\dfrac{(-1)^{n-1}}{n}x^n+o(x^n) ln(1+x)=x−2x2+3x3−⋯+n(−1)n−1xn+o(xn)
泰勒多项式唯一性证明
设点
f
f
f在点
x
0
x_0
x0有
n
n
n阶导数,并且存在
n
n
n阶多项式
Q
n
(
x
)
Q_n(x)
Qn(x),使得
f
(
x
)
=
Q
n
(
x
)
+
o
(
(
x
−
x
0
)
n
)
(
x
→
x
0
)
f(x)=Q_n(x)+o((x-x_0)^n) \qquad (x\rightarrow x_0)
f(x)=Qn(x)+o((x−x0)n)(x→x0)
则 Q n ( x ) Q_n(x) Qn(x)即为 f f f在点 x 0 x_0 x0的 n n n阶泰勒多项式 P n ( x ) P_n(x) Pn(x).
证明
由上文可得
f
f
f在点
x
0
x_0
x0处的
f
(
x
)
=
P
n
(
x
)
+
o
(
(
x
−
x
0
)
n
)
(
x
→
x
0
)
f(x)=P_n(x)+o((x-x_0)^n) \qquad (x\rightarrow x_0)
f(x)=Pn(x)+o((x−x0)n)(x→x0)
两式做差得
P
n
(
x
)
−
Q
n
(
x
)
=
o
(
(
x
−
x
0
)
n
)
(
x
→
x
0
)
P_n(x)-Q_n(x)=o((x-x_0)^n) \qquad (x\rightarrow x_0)
Pn(x)−Qn(x)=o((x−x0)n)(x→x0)
由于
P
n
(
x
)
−
Q
n
(
x
)
=
a
0
+
a
1
(
x
−
x
0
)
+
⋯
+
a
n
(
x
−
x
0
)
n
P_n(x)-Q_n(x)=a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n
Pn(x)−Qn(x)=a0+a1(x−x0)+⋯+an(x−x0)n是关于
x
−
x
0
x-x_0
x−x0的
n
n
n阶多项式,即
a
0
+
a
1
(
x
−
x
0
)
+
⋯
+
a
n
(
x
−
x
0
)
n
=
o
(
(
x
−
x
0
)
n
)
(
x
→
x
0
)
a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n=o((x-x_0)^n) \qquad (x\rightarrow x_0)
a0+a1(x−x0)+⋯+an(x−x0)n=o((x−x0)n)(x→x0)
由此可得
a
0
=
0
a_0=0
a0=0.再将上式两边同时除以
(
x
−
x
0
)
(x-x_0)
(x−x0)可得
a
1
+
a
2
(
x
−
x
0
)
+
⋯
+
a
n
(
x
−
x
0
)
n
−
1
=
o
(
(
x
−
x
0
)
n
−
1
)
(
x
→
x
0
)
a_1+a_2(x-x_0)+\cdots+a_n(x-x_0)^{n-1}=o((x-x_0)^{n-1}) \qquad (x\rightarrow x_0)
a1+a2(x−x0)+⋯+an(x−x0)n−1=o((x−x0)n−1)(x→x0)
可得 a 1 = 0 a_1=0 a1=0.以此类推,可以得到 a 0 = a 1 = ⋯ = a n = 0 a_0=a_1=\cdots=a_n=0 a0=a1=⋯=an=0,从而 Q n ( x ) ≡ P n ( x ) Q_n(x) \equiv P_n(x) Qn(x)≡Pn(x),即可得证。
例题
皮亚诺余项
题1: 写出 f ( x ) = ln ( 1 + x ) f(x)=\ln(1+x) f(x)=ln(1+x)的带皮亚诺余项的 n n n阶麦克劳林公式
解:
f
(
k
)
(
x
)
=
(
−
1
)
k
−
1
(
k
−
1
)
!
(
1
+
x
)
−
k
\qquad f^{(k)}(x)=(-1)^{k-1}(k-1)!(1+x)^{-k}
f(k)(x)=(−1)k−1(k−1)!(1+x)−k
\qquad 由此可得
ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) \qquad \ln(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+(-1)^{n-1}\dfrac{x^n}{n}+o(x^n) ln(1+x)=x−2x2+3x3−⋯+(−1)n−1nxn+o(xn)
题2: 写出 f ( x ) = ( 1 + x ) a ( a ≠ 0 ) f(x)=(1+x)^a(a\neq 0) f(x)=(1+x)a(a=0)的带皮亚诺余项的 n n n阶麦克劳林公式
解:
f
(
k
)
(
x
)
=
a
(
a
−
1
)
⋯
(
a
−
k
+
1
)
(
1
+
x
)
a
−
k
\qquad f^{(k)}(x)=a(a-1)\cdots(a-k+1)(1+x)^{a-k}
f(k)(x)=a(a−1)⋯(a−k+1)(1+x)a−k
\qquad 由此可得
( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + o ( x n ) \qquad (1+x)^a=1+ax+\dfrac{a(a-1)}{2!}x^2+\cdots+\dfrac{a(a-1)\cdots(a-n+1)}{n!}x^n+o(x^n) (1+x)a=1+ax+2!a(a−1)x2+⋯+n!a(a−1)⋯(a−n+1)xn+o(xn)
题3: 写出 f ( x ) = e sin 2 x f(x)=e^{\sin^2 x} f(x)=esin2x的带皮亚诺余项的 4 4 4阶麦克劳林公式
解:
\qquad
函数
sin
x
\sin x
sinx和
e
u
2
e^{u^2}
eu2的带皮亚诺余项的麦克劳林公式分别为
sin x = x − x 3 3 ! + o ( x 3 ) ( x → 0 ) \qquad \sin x=x-\dfrac{x^3}{3!}+o(x^3) \qquad (x\rightarrow 0) sinx=x−3!x3+o(x3)(x→0)
e u 2 = 1 + u 2 + u 4 2 ! + o ( u 4 ) ( u → 0 ) \qquad e^{u^2}=1+u^2+\dfrac{u^4}{2!}+o(u^4) \qquad (u\rightarrow 0) eu2=1+u2+2!u4+o(u4)(u→0)
\qquad
因为当
x
→
0
x\rightarrow0
x→0时,
u
=
sin
x
∼
x
u=\sin x\sim x
u=sinx∼x,所以
e
sin
2
x
=
1
+
[
x
−
x
3
3
!
+
o
(
x
3
)
]
2
+
1
2
!
[
x
−
x
3
3
!
+
o
(
x
3
)
]
4
+
o
(
x
4
)
\qquad e^{\sin^2x}=1+[x-\dfrac{x^3}{3!}+o(x^3)]^2+\dfrac{1}{2!}[x-\dfrac{x^3}{3!}+o(x^3)]^4+o(x^4)
esin2x=1+[x−3!x3+o(x3)]2+2!1[x−3!x3+o(x3)]4+o(x4)
= 1 + x 2 + 1 6 x 4 + o ( x 4 ) \qquad \qquad \quad =1+x^2+\dfrac 16x^4+o(x^4) =1+x2+61x4+o(x4)
拉格朗日余项
题1: 写出
e
x
e^x
ex的带拉格朗日余项的
n
n
n阶麦克劳林公式
解:
\qquad
令
f
(
x
)
=
e
x
f(x)=e^x
f(x)=ex,则
f
(
k
)
(
x
)
=
e
x
f^{(k)}(x)=e^x
f(k)(x)=ex,在
0
0
0点的各阶导数都为
1
1
1
\qquad 由此可得
e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + e ξ ( n + 1 ) ! x n + 1 ( ξ ∈ ( 0 , x ) ) \qquad e^x=1+x+\dfrac{x^2}{2!}+\cdots+\dfrac{x^n}{n!}+\dfrac{e^\xi}{(n+1)!}x^{n+1}\qquad(\xi\in{(0,x)}) ex=1+x+2!x2+⋯+n!xn+(n+1)!eξxn+1(ξ∈(0,x))
题2: 写出 sin x \sin x sinx和 cos x \cos x cosx的带拉格朗日余项的 2 n 2n 2n阶麦克劳林公式
解:
\qquad
令
f
(
x
)
=
sin
x
f(x)=\sin x
f(x)=sinx
∵ ( sin x ) ( n ) = sin ( x + n π 2 ) \qquad \because (\sin x)^{(n)}=\sin(x+\dfrac{n\pi}{2}) ∵(sinx)(n)=sin(x+2nπ)
∴ f ( 2 n ) ( 0 ) = 0 , f ( 2 n + 1 ) ( 0 ) = ( − 1 ) n ( n = 0 , 1 , 2 , … ) \qquad\therefore f^{(2n)}(0)=0,f^{(2n+1)}(0)=(-1)^n \qquad(n=0,1,2,\dots) ∴f(2n)(0)=0,f(2n+1)(0)=(−1)n(n=0,1,2,…)
\qquad 由此可得
sin x = x − x 3 3 ! + x 5 5 ! − ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + x 2 n + 1 ( 2 n + 1 ) ! sin ( ξ + 2 n + 1 2 π ) ( ξ ∈ ( 0 , x ) ) \qquad\sin x=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\cdots+(-1)^{n-1}\dfrac{x^{2n-1}}{(2n-1)!}+\dfrac{x^{2n+1}}{(2n+1)!}\sin(\xi+\dfrac{2n+1}{2}\pi) \qquad (\xi\in(0,x)) sinx=x−3!x3+5!x5−⋯+(−1)n−1(2n−1)!x2n−1+(2n+1)!x2n+1sin(ξ+22n+1π)(ξ∈(0,x))
\qquad 同理可得
cos x = 1 − x 2 2 ! + x 4 4 ! − ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + x 2 n + 1 ( 2 n + 1 ) ! cos ( ξ + 2 n + 1 2 π ) ( ξ ∈ ( 0 , x ) ) \qquad \cos x=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\cdots+(-1)^n\dfrac{x^{2n}}{(2n)!}+\dfrac{x^{2n+1}}{(2n+1)!}\cos(\xi+\dfrac{2n+1}{2}\pi) \qquad (\xi\in(0,x)) cosx=1−2!x2+4!x4−⋯+(−1)n(2n)!x2n+(2n+1)!x2n+1cos(ξ+22n+1π)(ξ∈(0,x))
总结
泰勒公式是一样很好用的东西,不过需要深刻的理解,而且导数的基础知识也要十分牢固,才能很好地掌握。