P5644 [PKUWC2018]猎人杀

P5644 [PKUWC2018]猎人杀

题目大意

一开始有 n n n个猎人,第 i i i个猎人有仇恨度 w i w_i wi。每次可以开枪射杀一个活着的猎人。

假设活着的猎人为 i 1 , i 2 , … , i m i_1,i_2,\dots,i_m i1,i2,,im,则第 i k i_k ik个猎人被射杀的概率是 w i k ∑ j = 1 m w i j \frac{w_{i_k}}{\sum\limits_{j=1}^mw_{i_j}} j=1mwijwik

1 1 1号猎人最后一个被射杀的概率。输出答案对 998244353 998244353 998244353取模。

w i > 0 , 1 ≤ ∑ w i ≤ 1 0 5 w_i>0,1\leq \sum w_i\leq 10^5 wi>0,1wi105


题解

转化题意

在不断射杀的过程中,概率的分母会不断改变。所以,我们可以稍微转化一下题意。

s u m = ∑ i = 1 n w i sum=\sum\limits_{i=1}^nw_i sum=i=1nwi,题意转化为:第 i i i个人被射杀的概率为 w i s u m \dfrac{w_i}{sum} sumwi,已经被射杀的人仍能继续被射杀。如果打中一个活着的人,那么这个人就死去。

为什么呢?因为在每次射杀的时候,每个活人被射杀的概率都他的仇恨度除以所有活人仇恨度的和。这样相对于原来,多了一个射杀死人的过程,但因为活人最终总会被射杀,所以本质上是一样的。

容斥

直接求 1 1 1号最后被射杀的概率比较困难,我们考虑使用容斥。

设在 1 1 1号之后被射杀的人的子集为 S S S的概率为 p ( S ) p(S) p(S),则答案为

a n s = ∑ ( − 1 ) ∣ S ∣ p ( S ) ans=\sum(-1)^{|S|}p(S) ans=(1)Sp(S)

然后,我们考虑如何求 p ( S ) p(S) p(S)

v ( S ) = ∑ i ∈ S w i v(S)=\sum\limits_{i\in S}w_i v(S)=iSwi。因为在 1 1 1号之后被射杀的人包含 S S S,所以就相当于射杀若干次,每次射杀除了 1 1 1号和集合 S S S之外的人,直到打中 1 1 1号。

p ( S ) = ∑ i = 0 + ∞ ( s u m − w 1 − v ( S ) s u m ) i ⋅ w 1 s u m p(S)=\sum\limits_{i=0}^{+\infty}(\dfrac{sum-w_1-v(S)}{sum})^i\cdot\dfrac{w_1}{sum} p(S)=i=0+(sumsumw1v(S))isumw1

接下来求 ∑ i = 0 + ∞ ( s u m − w 1 − v ( S ) s u m ) i \sum\limits_{i=0}^{+\infty}(\frac{sum-w_1-v(S)}{sum})^i i=0+(sumsumw1v(S))i。由等比数列求和公式可得

∑ i = 0 + ∞ ( s u m − w 1 − v ( S ) s u m ) i = 1 − ( s u m − w 1 − v ( S ) s u m ) + ∞ 1 − s u m − w 1 − v ( S ) s u m = 1 w 1 + v ( S ) s u m = s u m w 1 + v ( S ) \sum\limits_{i=0}^{+\infty}(\frac{sum-w_1-v(S)}{sum})^i=\dfrac{1-(\frac{sum-w_1-v(S)}{sum})^{+\infty}}{1-\frac{sum-w_1-v(S)}{sum}}=\dfrac{1}{\frac{w_1+v(S)}{sum}}=\dfrac{sum}{w_1+v(S)} i=0+(sumsumw1v(S))i=1sumsumw1v(S)1(sumsumw1v(S))+=sumw1+v(S)1=w1+v(S)sum

所以

p ( S ) = s u m w 1 + v ( S ) ⋅ w 1 s u m = w 1 w 1 + v ( S ) p(S)=\dfrac{sum}{w_1+v(S)}\cdot \dfrac{w_1}{sum}=\dfrac{w_1}{w_1+v(S)} p(S)=w1+v(S)sumsumw1=w1+v(S)w1

那么

a n s = ∑ ( − 1 ) ∣ S ∣ w 1 w 1 + v ( S ) ans=\sum(-1)^{|S|}\dfrac{w_1}{w_1+v(S)} ans=(1)Sw1+v(S)w1

生成函数

依题意, 1 ≤ ∑ w i ≤ 1 0 5 1\leq \sum w_i\leq 10^5 1wi105,所以我们可以枚举 v ( S ) v(S) v(S)

g ( i ) = ∑ v ( S ) = i ( − 1 ) ∣ S ∣ g(i)=\sum\limits_{v(S)=i}(-1)^{|S|} g(i)=v(S)=i(1)S

那么

a n s = ∑ i = 0 s u m g ( i ) ⋅ w 1 w 1 + i ans=\sum\limits_{i=0}^{sum}g(i)\cdot\dfrac{w_1}{w_1+i} ans=i=0sumg(i)w1+iw1

于是问题就转化为求 g ( i ) g(i) g(i)了。我们发现, g ( i ) g(i) g(i)其实就是 ∏ i = 2 n ( 1 − x w i ) \prod\limits_{i=2}^n(1-x^{w_i}) i=2n(1xwi)的第 i i i次项的系数。

N T T NTT NTT

接下来,我们要用 N T T NTT NTT来求 ∏ i = 2 n ( 1 − x w i ) \prod\limits_{i=2}^n(1-x^{w_i}) i=2n(1xwi)

用分治,求 [ l , r ] [l,r] [l,r]的多项式时,先求出 [ l , m i d ] [l,mid] [l,mid] [ m i d + 1 , r ] [mid+1,r] [mid+1,r]的多项式,再将两个多项式相乘即可。

我们把求的过程看作 log ⁡ n \log n logn层,每层的时间复杂度为 O ( s u m log ⁡ s u m ) O(sum\log sum) O(sumlogsum),所以总时间复杂度为 O ( s u m log ⁡ s u m log ⁡ n ) O(sum\log sum\log n) O(sumlogsumlogn)

总时间复杂度可以看作 O ( n log ⁡ 2 n ) O(n\log^2 n) O(nlog2n)

code

#include<bits/stdc++.h>
using namespace std;
long long ans=0,w[100005],f[500005],g[20][500005];
const long long G=3,mod=998244353;
long long mi(long long t,long long v){
	if(!v) return 1;
	long long re=mi(t,v/2);
	re=re*re%mod;
	if(v&1) re=re*t%mod;
	return re;
}
void ch(long long *a1,int l){
	for(int i=1,j=l/2;i<l-1;i++){
		if(i<j) swap(a1[i],a1[j]);
		int k=l/2;
		while(j>=k){
			j-=k;k>>=1;
		}
		j+=k;
	}
}
void ntt(long long *a1,int l,int fl){
	long long W,wn;
	for(int i=2;i<=l;i<<=1){
		if(fl==1) wn=mi(G,(mod-1)/i);
		else wn=mi(G,mod-1-(mod-1)/i);
		for(int j=0;j<l;j+=i){
			W=1;
			for(int k=j;k<j+i/2;k++,W=W*wn%mod){
				long long t=a1[k],u=W*a1[k+i/2]%mod;
				a1[k]=(t+u)%mod;
				a1[k+i/2]=(t-u+mod)%mod;
			}
		}
	}
	if(fl==-1){
		long long ny=mi(l,mod-2);
		for(int i=0;i<l;i++) a1[i]=a1[i]*ny%mod;
	}
}
int solve(int l,int r,long long *a1,int now){
	if(l==r){
		a1[0]=1;a1[w[l]]=mod-1;
		return w[l];
	}
	int mid=l+r>>1,vt,len=1;
	vt=solve(l,mid,a1,now+1)+solve(mid+1,r,g[now+1],now+1);
	while(len<=vt) len<<=1;
	ch(a1,len);ch(g[now+1],len);
	ntt(a1,len,1);ntt(g[now+1],len,1);
	for(int i=0;i<len;i++){
		a1[i]=a1[i]*g[now+1][i]%mod;
		g[now+1][i]=0;
	}
	ch(a1,len);
	ntt(a1,len,-1);
	return vt;
}
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		scanf("%lld",&w[i]);
	}
	if(n==1){
		printf("1");return 0;
	}
	int vt=solve(2,n,f,0);
	for(int i=0;i<=vt;i++){
		ans=(ans+f[i]*w[1]%mod*mi(w[1]+i,mod-2)%mod)%mod;
	}
	printf("%lld",ans);
	return 0;
}
  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值