已知
f
(
x
)
=
x
3
−
6
a
x
2
+
9
a
2
x
f(x)=x^3-6ax^2+9a^2x
f(x)=x3−6ax2+9a2x(
a
∈
R
a\in R
a∈R)
(1)求函数
f
(
x
)
f(x)
f(x)的单调递减区间。
(2)当
a
>
0
a>0
a>0时,若对
∀
x
∈
[
0
,
3
]
\forall x\in[0,3]
∀x∈[0,3]都有
f
(
x
)
≤
4
f(x)\leq 4
f(x)≤4成立,求实数
a
a
a的取值范围。
解:
\quad
(1)
f
′
(
x
)
=
3
x
2
−
12
a
x
+
9
a
2
=
3
(
x
−
a
)
(
x
−
3
a
)
f'(x)=3x^2-12ax+9a^2=3(x-a)(x-3a)
f′(x)=3x2−12ax+9a2=3(x−a)(x−3a)
∵ \qquad\because ∵当 f ′ ( x ) < 0 f'(x)<0 f′(x)<0时, f ( x ) f(x) f(x)单调递减
∴ \qquad\therefore ∴①当 a > 0 a>0 a>0时, f ( x ) f(x) f(x)的单调递减区间为 [ a , 3 a ] [a,3a] [a,3a]
\qquad ②当 a = 0 a=0 a=0时, f ( x ) f(x) f(x)没有单调递减区间
\qquad ③当 a < 0 a<0 a<0时, f ( x ) f(x) f(x)的单调递减区间为 [ 3 a , a ] [3a,a] [3a,a]
\quad (2)当 a > 0 a>0 a>0时, f ( x ) f(x) f(x)在 ( − ∞ , a ] (-\infty,a] (−∞,a]和 [ 3 a , + ∞ ) [3a,+\infty) [3a,+∞)上单调递增,在 [ a , 3 a ] [a,3a] [a,3a]上单调递减
\qquad ①当 0 < 3 a ≤ 3 0<3a\leq 3 0<3a≤3时,即 0 < a ≤ 1 0<a\leq 1 0<a≤1时
\qquad 题意即 f ( a ) = 4 a 3 ≤ 4 f(a)=4a^3\leq 4 f(a)=4a3≤4且 f ( 3 ) = 27 a 2 − 54 a + 27 ≤ 4 f(3)=27a^2-54a+27\leq 4 f(3)=27a2−54a+27≤4
\qquad 解得 1 − 2 3 9 ≤ a ≤ 1 1-\dfrac{2\sqrt 3}{9}\leq a\leq 1 1−923≤a≤1
\qquad ②当 a < 3 a<3 a<3且 3 a > 3 3a>3 3a>3时,即 1 < a < 3 1<a<3 1<a<3时
\qquad 题意即 f ( a ) = 4 a 3 ≤ 4 f(a)=4a^3\leq 4 f(a)=4a3≤4
\qquad 解得 a a a无解
\qquad ③当 a ≥ 3 a\geq 3 a≥3时
\qquad 题意即 f ( 3 ) = 27 a 2 − 54 a + 27 ≤ 4 f(3)=27a^2-54a+27\leq 4 f(3)=27a2−54a+27≤4
\qquad 解得 a a a无解
\qquad 综上所述, a a a的取值范围为 [ 1 − 2 3 9 , 1 ] [1-\dfrac{2\sqrt 3}{9},1] [1−923,1]