导数大题练习2

该问题探讨了函数f(x)=x^3-6ax^2+9a^2x的单调性,分情况讨论了a>0、a=0和a<0时的单调递减区间。在a>0的情况下,进一步分析了当f(x)≤4对所有x∈[0,3]恒成立时,实数a的取值范围,得出a的范围为[1-2√3/9,1]。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知 f ( x ) = x 3 − 6 a x 2 + 9 a 2 x f(x)=x^3-6ax^2+9a^2x f(x)=x36ax2+9a2x a ∈ R a\in R aR
(1)求函数 f ( x ) f(x) f(x)的单调递减区间。
(2)当 a > 0 a>0 a>0时,若对 ∀ x ∈ [ 0 , 3 ] \forall x\in[0,3] x[0,3]都有 f ( x ) ≤ 4 f(x)\leq 4 f(x)4成立,求实数 a a a的取值范围。

解:
\quad (1) f ′ ( x ) = 3 x 2 − 12 a x + 9 a 2 = 3 ( x − a ) ( x − 3 a ) f'(x)=3x^2-12ax+9a^2=3(x-a)(x-3a) f(x)=3x212ax+9a2=3(xa)(x3a)

∵ \qquad\because f ′ ( x ) < 0 f'(x)<0 f(x)<0时, f ( x ) f(x) f(x)单调递减

∴ \qquad\therefore ①当 a > 0 a>0 a>0时, f ( x ) f(x) f(x)的单调递减区间为 [ a , 3 a ] [a,3a] [a,3a]

\qquad ②当 a = 0 a=0 a=0时, f ( x ) f(x) f(x)没有单调递减区间

\qquad ③当 a < 0 a<0 a<0时, f ( x ) f(x) f(x)的单调递减区间为 [ 3 a , a ] [3a,a] [3a,a]

\quad (2)当 a > 0 a>0 a>0时, f ( x ) f(x) f(x) ( − ∞ , a ] (-\infty,a] (,a] [ 3 a , + ∞ ) [3a,+\infty) [3a,+)上单调递增,在 [ a , 3 a ] [a,3a] [a,3a]上单调递减

\qquad ①当 0 < 3 a ≤ 3 0<3a\leq 3 0<3a3时,即 0 < a ≤ 1 0<a\leq 1 0<a1

\qquad 题意即 f ( a ) = 4 a 3 ≤ 4 f(a)=4a^3\leq 4 f(a)=4a34 f ( 3 ) = 27 a 2 − 54 a + 27 ≤ 4 f(3)=27a^2-54a+27\leq 4 f(3)=27a254a+274

\qquad 解得 1 − 2 3 9 ≤ a ≤ 1 1-\dfrac{2\sqrt 3}{9}\leq a\leq 1 1923 a1

\qquad ②当 a < 3 a<3 a<3 3 a > 3 3a>3 3a>3时,即 1 < a < 3 1<a<3 1<a<3

\qquad 题意即 f ( a ) = 4 a 3 ≤ 4 f(a)=4a^3\leq 4 f(a)=4a34

\qquad 解得 a a a无解

\qquad ③当 a ≥ 3 a\geq 3 a3

\qquad 题意即 f ( 3 ) = 27 a 2 − 54 a + 27 ≤ 4 f(3)=27a^2-54a+27\leq 4 f(3)=27a254a+274

\qquad 解得 a a a无解

\qquad 综上所述, a a a的取值范围为 [ 1 − 2 3 9 , 1 ] [1-\dfrac{2\sqrt 3}{9},1] [1923 ,1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值