托里拆利小号悖论

托里拆利小号悖论

如果我告诉你,有一个小号,它的体积有限,但表面积无限大,你会相信吗?

也许你不相信,但的确由这样的小号。意大利数学家托里拆利将 y = 1 x y=\dfrac 1x y=x1 x ≥ 1 x\geq 1 x1的部分绕 x x x轴旋转一圈,得到了下面这个小号状的旋转体。这个小号的体积有限,但表面积无限大。

在这里插入图片描述
我们来计算一下。

通过定积分求旋转体的体积的知识,可得

V = π ∫ 1 + ∞ 1 x 2 d x = π ⋅ ( − 1 x ) ∣ 1 + ∞ = π \qquad V=\pi\int_1^{+\infty}\dfrac{1}{x^2}dx=\pi\cdot (-\dfrac 1x)\bigg\vert_1^{+\infty}=\pi V=π1+x21dx=π(x1) 1+=π

通过定积分求旋转曲面的面积的知识,可得

S = 2 π ∫ 1 + ∞ 1 x 1 + ( − 1 x 2 ) 2 d x = 2 π ∫ 1 + ∞ 1 x 1 + 1 x 4 d x \qquad S=2\pi\int_1^{+\infty}\dfrac 1x\sqrt{1+(-\dfrac{1}{x^2})^2}dx=2\pi\int_1^{+\infty}\dfrac 1x\sqrt{1+\dfrac{1}{x^4}}dx S=2π1+x11+(x21)2 dx=2π1+x11+x41 dx

= 2 π ∫ 1 + ∞ x 4 + 1 x 3 d x \qquad \quad = 2\pi\int_1^{+\infty}\dfrac{\sqrt{x^4+1}}{x^3}dx =2π1+x3x4+1 dx

因为 x 4 + 1 x 3 ≥ x 4 x 3 = 1 x \dfrac{\sqrt{x^4+1}}{x^3}\geq\dfrac{\sqrt{x^4}}{x^3}=\dfrac 1x x3x4+1 x3x4 =x1,所以

S = 2 π ∫ 1 + ∞ x 4 + 1 x 3 d x ≥ 2 π ∫ 1 + ∞ 1 x d x = 2 π ( ln ⁡ x ) ∣ 1 + ∞ = + ∞ \qquad S=2\pi\int_1^{+\infty}\dfrac{\sqrt{x^4+1}}{x^3}dx\geq2\pi\int_1^{+\infty}\dfrac 1xdx=2\pi(\ln x)\bigg\vert_1^{+\infty}=+\infty S=2π1+x3x4+1 dx2π1+x1dx=2π(lnx) 1+=+

由此可得,托里拆利小号的体积有限,表面积无限大。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值