三维点云数据拼接技术一直是逆向工程、计算机视觉、模式识别、曲面质量检测及摄影测量学等领域的研究热点与难点。以逆向工程为例, 三维数字化技术是逆向工程中的首要环节, 在实际测量过程中, 由于受被测物体几何形状及测量方式的限制, 测量设备需要从不同视角对物体进行多次定位测量, 然后对各个不同视角测得的点云数据进行多视拼接, 统一到1 个全局坐标系下, 即点云拼接问题.
三维点云拼接技术在不同场合亦被称为重定位、配准或拼合技术, 其实质是把不同的坐标系下测得的数据点云进行坐标变换, 问题的关键是坐标变换参数R( 旋转矩阵) 和t ( 平移矢量) 的求取。
点云配准有手动配准、依赖仪器的配准和自动配准。通常我们所说的点云配准技术即是指最后一种。目前采用的自动配准技术一般分为初始配准和精确配准两步, 初始配准是为了缩小点云之间的旋转和平移错位以提高精确配准的效率和趋向, 精确配准则是为了使两个点云之间的配准误差达到最小。一般初始配准很难满足精度要求,需在初始配准的基础上使用迭代算法进行精确配准, 使点云之间的配准误差达到最小。
常见的初始配准方法有: 中心重合法:简单的把两个点云的重心重合, 这种方式只能缩小平移错位而无法缩小旋转错位; 标签法:即在测量时人为地贴上一些特征点, 然后使用这些特征点进行定位, 这种方式仍然是依赖于测量和仪器的; 提取特征法,有提取平面特征、提取轮廓曲线等, 这种方式要求点云有比较明显的特征。
精确配准一般采用ICP ( iterative closest point)算法。但传统的ICP算法计算效率不高, 因此国内外许多研究者都为改进ICP算法做出了努力。有提出了用点的切平面来逼近点云, 最后归结为求点到切平面的最小二乘距离的方法,但这种方法速度仍然比较慢。有结合了逆向定标法和随机搜寻法来提高速度,但会对配准精度产生一定的影响。有人提出直接对两个点云中的点连线并寻找对应线段进行配准,但存在无法保证线段之间的对应关系的缺陷。
ICP 及其各种改进算法已成为精确拼接领域的主流算法, 并不断有新的改进算法出现以适用于不同场合的要求。国外学者Rusinkiew icz 等将ICP 算法分为6 个阶段, 并分阶段对ICP 的各种改进算法进行了分析比较。基于目前ICP 及其改进算法的发展现状, 将其分为4 个主要阶段:
( 1) 对原始点云数据进行采样;
( 2) 确定初始对应点集;
( 3) 去除错误对应点对;
( 4) 坐标变换的求解。