BevFusion (5):逐行代码详解

本文详细介绍了BevFusion模型的结构,包括相机和点云的Bev特征提取,编码器、fuser、decoder和header四个部分。相机分支通过vtransformer模块融合深度和图像特征,点云分支则通过体素化和backbone提取Bev特征。在fuser部分,两者特征被融合,经过decoder进一步提取特征,最后在header部分进行解码,生成检测和分割输出。文章深入探讨了vtransformer的DepthLSSTransformer、视锥转换和bev pool的实现细节,以及点云和图像特征的融合过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Bevfusion 结构介绍

1.1 结构概览

论文中给出了Bevfusion架构图,它的输入是多视角的相机点云图,经过两个特定的head,分别用于做检测任务分割任务

在这里插入图片描述

图1 Bevfusion 结构图

Bevfusion因为有两个模态的输入:多视角相机和点云,所以对应两个分支:相机分支和点云分支。

  • 相机分支:输入6个视角的图片后,提取特征,然后经VT(View Transformer)转换之后得到相机的Bev特征
  • 激光雷达分支:输入点云数据,经过Encoder编码得到体素化Lidar特征,然后沿z方向展平,得到Lidar Bev特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值