一、技术栈
操作系统:Alma、Rocky、CentOS、Ubuntu
开发语言:Python、R、Java
爬虫框架:BS4、lxml、Scrapy
关系型数据库:MySQL、PostgreSQL
数据分析:Numpy、Pandas、Matplotlib、Seaborn、pyecharts、scipy、OpenCV
机器学习:sklearn、XGBoost、LightGBM
深度学习(国外):TensorFlow、PyTorch、Keras、Caffe、Theano
深度学习(国内):PaddlePaddle、MindSpore、Jittor、MegEngine、OneFlow
AI能力平台:(百度云、阿里云、腾讯云、华为云、科大讯飞)
算法方向:文字识别、图像识别、视频识别、NLP、专家系统
AI大模型:部署、预训练数据、训练、微调、评估、提示词(Prompt)
开源大模型:Llama、百川、千问、智谱、浦语、混元、ChatGPT、Ollama
AIGC方向:文本、图像、视频、音乐、数字人、智能体各种应用
算力平台:魔塔社区、厚德云、丹摩、星海、驱动云、阿里云、腾讯云
二、岗位分析
1、AI算法工程师(传统)
技术专家路线
- 初级 AI 算法工程师:掌握基础的数学知识,如线性代数、概率论等,熟练掌握至少一门编程语言,如 Python。熟悉常见的机器学习和深度学习算法,了解一些基本的 AI 框架,如 Keras 等。主要负责数据收集、清洗和预处理,进行简单的模型训练与调优,协助完成项目中的基础算法任务。
- 中级 AI 算法工程师:深入理解机器学习和深度学习的原理与算法,能够独立选择和应用合适的算法解决实际问题。熟练掌握多种 AI 框架,如 TensorFlow、PyTorch 等,具备模型优化和调参的能力。可以独立承担小型项目的算法设计与开发,对项目的技术方案负责,开始参与算法的创新和改进工作。
- 高级 AI 算法工程师 / 技术专家:精通机器学习、深度学习以及其他前沿的 AI 技术,能够解决复杂的算法问题和性能瓶颈。在特定领域,如计算机视觉、自然语言处理等,有深入的研究和丰富的实践经验,能够提出创新性的算法和解决方案。关注行业的最新研究成果和技术趋势,推动团队在技术上的不断进步,指导和培养初级和中级算法工程师。
架构师路线
- AI 系统架构师:具备深厚的 AI 技术功底,同时对系统架构、分布式计算、云计算等领域有深入的了解。负责设计和构建大规模的 AI 系统架构,确保系统的高可用性、可扩展性和高性能。协调不同团队之间的工作,包括算法团队、开发团队、运维团队等,保障 AI 项目的顺利实施。
- 首席技术官(CTO):从战略层面规划公司的技术发展方向,制定技术创新策略和研发计划。领导技术团队进行核心技术的研发和攻关,推动公司在 AI 领域的技术竞争力提升。关注行业动态和市场需求,带领团队进行技术转型和业务创新,使公司的技术发展与市场需求紧密结合。
管理路线
- 项目主管 / 经理:具备一定的技术背景和项目经验,负责 AI 项目的整体规划、进度安排、资源协调和风险管理。与客户或其他部门沟通需求,明确项目目标和范围,确保项目按时、高质量交付。带领团队完成项目任务,提升团队的整体绩效和协作能力。
- 部门经理 / 技术总监:负责管理整个 AI 研发部门,制定部门的发展战略和目标。进行人才招聘、培养和团队建设,打造高效的研发团队。协调部门与其他部门之间的合作与沟通,推动公司内部的技术共享和协同创新。
创业或行业专家路线
- 创业者:积累了丰富的技术经验、行业资源和管理经验后,可以选择创业,成立自己的 AI 公司,开发具有市场竞争力的 AI 产品或解决方案。需要具备商业洞察力、领导力和资源整合能力,同时要承担创业带来的风险和挑战。
- 行业顾问 / 专家:凭借在 AI 领域的专业知识和丰富经验,成为行业顾问或专家,为其他企业提供技术咨询、解决方案设计、项目评估等服务。可以通过参与行业论坛、发表专业文章、出版书籍等方式,提升自己在行业内的知名度和影响力。
2、大模型算法工程师
技术专家路线
- 初级大模型算法工程师:掌握扎实的数学基础,包括线性代数、概率论、微积分和优化理论等。熟练掌握至少一种编程语言,如 Python。了解深度学习框架,如 TensorFlow、PyTorch 等。熟悉大模型的基本概念和原理,如 Transformer 架构等。能够在导师指导下,参与数据预处理、模型训练与调优等基础工作。
- 中级大模型算法工程师:深入理解深度学习算法和大模型的核心原理,能够独立选择和应用合适的算法解决实际问题。熟练掌握多种深度学习框架和相关工具,如 Hugging Face Transformers 等,具备模型优化和调参的能力,能够提高模型的性能和效率。可以独立承担小型项目的算法设计与开发,对项目的技术方案负责,并能够解决项目中出现的常见问题。开始关注大模型领域的最新研究成果和技术趋势,尝试将一些新的方法和技术应用到实际项目中。
- 高级大模型算法工程师 / 技术专家:精通大模型的各种技术,包括模型架构、训练算法、优化技巧等,能够解决复杂的算法问题和性能瓶颈。在特定领域,如自然语言处理、计算机视觉等,有深入的研究和丰富的实践经验,能够提出创新性的算法和解决方案,推动项目在技术上的突破。能够带领团队开展大模型相关的研发工作,指导和培养初级和中级算法工程师。关注行业的发展趋势,为团队制定技术发展方向和研究计划。
架构师路线
- 大模型架构师:具备深厚的大模型技术功底,同时对系统架构、分布式计算、云计算等领域有深入的了解。负责设计和构建大规模的大模型系统架构,确保系统的高可用性、可扩展性和高性能。协调不同团队之间的工作,包括算法团队、开发团队、运维团队等,保障大模型项目的顺利实施。对大模型的工程化和产业化有深入的理解,能够制定合理的技术方案和实施计划,推动大模型在实际业务中的应用。
- 首席技术官(CTO):从战略层面规划公司的大模型技术发展方向,制定技术创新策略和研发计划。领导技术团队进行核心技术的研发和攻关,提升公司在大模型领域的技术竞争力。关注行业动态和市场需求,带领团队进行技术转型和业务创新,使公司的大模型技术发展与市场需求紧密结合。负责与外部合作伙伴、科研机构等进行技术交流与合作,提升公司的行业影响力。
管理路线
- 项目主管 / 经理:具备一定的大模型技术背景和项目经验,负责大模型项目的整体规划、进度安排、资源协调和风险管理。与客户或其他部门沟通需求,明确项目目标和范围,确保项目按时、高质量交付。带领团队完成项目任务,提升团队的整体绩效和协作能力,协调团队成员之间的工作,解决项目中出现的各种问题。
- 部门经理 / 技术总监:负责管理整个大模型研发部门,制定部门的发展战略和目标。进行人才招聘、培养和团队建设,打造高效的研发团队。协调部门与其他部门之间的合作与沟通,推动公司内部的技术共享和协同创新。关注行业的发展趋势和竞争对手的动态,及时调整部门的发展方向和策略,确保部门的技术水平和业务能力处于行业领先地位。
创业或行业专家路线
- 创业者:积累了丰富的大模型技术经验、行业资源和管理经验后,可以选择创业,成立自己的大模型公司,开发具有市场竞争力的大模型产品或解决方案。需要具备商业洞察力、领导力和资源整合能力,能够制定公司的发展战略和商业模式,吸引投资和人才,推动公司的发展和壮大。同时要承担创业带来的风险和挑战,如市场竞争、资金压力等。
- 行业顾问 / 专家:凭借在大模型领域的专业知识和丰富经验,成为行业顾问或专家,为其他企业提供技术咨询、解决方案设计、项目评估等服务。可以通过参与行业论坛、发表专业文章、出版书籍等方式,提升自己在行业内的知名度和影响力,推动大模型技术在行业内的普及和应用。还可以与高校、科研机构等合作,开展科研项目和人才培养工作,为行业的发展做出贡献。
3、AI应用工程师
技术路线
- 初级 AI 应用工程师:掌握编程语言如 Python 等,熟悉机器学习、深度学习的基本概念与常用算法,了解数据处理和分析的基本方法,能在指导下使用现有框架和工具完成简单的 AI 应用开发任务,如数据收集与清洗、模型训练的基本操作等。
- 中级 AI 应用工程师:深入理解机器学习和深度学习算法原理,熟练掌握多种深度学习框架,具备数据建模、算法调优的能力,可独立完成特定领域的 AI 应用开发,如构建图像识别、自然语言处理等应用,还能对模型性能进行评估和改进。
- 高级 AI 应用工程师 / 技术专家:精通 AI 核心技术,包括但不限于强化学习、生成对抗网络等前沿技术,能够解决复杂的技术难题,引领团队进行技术创新和突破,在特定领域有深入研究和丰富实践,可制定技术方案和发展方向,推动 AI 技术在业务中的深度应用。
项目管理与架构师路线
- AI 项目主管 / 经理:具备一定技术基础和项目经验后,负责 AI 项目的整体规划、进度控制、资源协调和风险管理,与客户及各部门沟通需求,明确项目目标,带领团队完成项目交付,确保项目质量和进度符合要求。
- AI 架构师:具备深厚的技术功底和系统架构设计能力,负责设计复杂的 AI 系统架构,确保系统的高可用性、可扩展性和高性能,统筹规划 AI 项目的技术架构和发展方向,指导团队进行技术选型和开发工作,协调解决项目中的重大技术问题。
行业专家与创业路线
- 行业 AI 专家:在某一行业领域(如医疗、金融、智能制造等)深入钻研,将 AI 技术与行业知识深度融合,成为该行业的 AI 应用专家,为行业内企业提供专业的 AI 解决方案和咨询服务,推动行业的智能化转型和发展。
- 创业者:积累了丰富的技术、经验和资源后,可选择创业,成立 AI 相关的科技公司,开发具有创新性和市场竞争力的 AI 产品或服务,满足市场特定需求,开拓新的商业机会和市场空间。
4、数据分析师、BI
见2.5、2.6
5、其它
AI训练师、AI测试工程师、AI标注工程师、 AI运维工程师、AI讲师、AI绘画师、AI产品经理等