让研究人员绞尽脑汁的Transformer位置编码

本文汇总了一些位置编码的工作,大体分为绝对式(训练式、三角式-Google原paper、递归式-用个RNN、相乘式)、相对式(Self-Attention with Relative Position Representations保证位置只和i-j的相对位置有关、XLNet式且从XLNet式起相对位置加在qk上为主、T5式仅仅是在Attention矩阵的基础上加一个可训练的偏置项同时对位置分桶、Deberta式和T5在qk展开项上有变化)、非套路式(CNN式和复数式)三种,从中我们可以看到各种神奇的操作。最后,笔者分享了RoPE

再展开写一下相对位置编码的思路,主要理解下面公式就比较容易:
q i = ( x i + p i ) W Q k j = ( x j + p j ) W K v j = ( x j + p j ) W V a i , j = s o f t m a x ( q i k j T ) o i = ∑ j a i , j v j q_i=(x_i+p_i)W_Q \\ k_j=(x_j+p_j)W_K \\ v_j=(x_j+p_j)W_V \\ a_{i,j} = softmax(q_ik_j^T) \\ o_i=\sum_j{a_{i,j}v_j} qi=(xi+pi)WQkj=(xj+pj)WKvj=(xj+pj)WVai,j=softmax(qikjT)oi=jai,jvj
上面相当于把self attention的公式进行了展开,如果我们进一步把 q i k j q_ik_j qikj给展开,很明显结果中存在着4项,将不同位置进行替换、加成可训练参数就是XLNet、T5式、Deberta式的区别

在2022年又出了一篇TRAIN SHORT, TEST LONG: ATTENTION WITH LINEAR BIASES ENABLES INPUT LENGTH EXTRAPOLATION,提出了Alibi,在百川最新的大模型(https://mp.weixin.qq.com/s/UOm4riBrLmulOPJO0h_pew)中用了这种相对位置编码:

  • 可学习的参数:这种比较常见,BRET 中就是这么做的,但这种方式弊端很明显,因为位置信息是学习出来的,所以如果训练集里面没有见过覆盖某个长度,推理的效果就无法得到保证。
  • 正弦位置编码:这是早期 transformer 使用的位置编码,论文中有尝试做实验,这种编码会随着训练/预测时的文本长度差异增大,(超过 50 个token 后)性能显著下降。
  • 旋转编码:论文中提到这种方式是比较不错的,只不过因其在每一层都要做一次向量旋转,从而降低训练和推理的速度。
    在这里插入图片描述
    在这里插入图片描述

ALiBi 的实现思路很直觉,模型在接收输入时直接去掉 Position Embedding 向量,
而是在 Attention 中计算 query·Key 的值后面加入一个偏置常量(非训练变量),来达到注入位置信息的效果。
而这个常量是一个 事先计算好 的数值,并且每个头(head)的值都有所不同。

sin cos位置编码实现

import torch

def getPositionEncoding(seq_len, d, n=10000):
    P = torch.zeros(seq_len, d)
    for k in range(seq_len):
        for i in torch.arange(d//2):
            denominator = n ^ (2*i//d)
            P[k, 2*i] = torch.sin(k/denominator)
            P[k, 2*i+1] = torch.cos(k/denominator)
    return P

P = getPositionEncoding(seq_len=3, d=4)
print(P)

'''
tensor([[0.0000e+00, 1.0000e+00, 0.0000e+00, 1.0000e+00],
        [1.0000e-04, 1.0000e+00, 1.0000e-04, 1.0000e+00],
        [2.0000e-04, 1.0000e+00, 2.0000e-04, 1.0000e+00]])
'''

RoPE代码实现

import torch
from typing import Tuple

def precompute_freqs_cis(dim: int, seq_len: int, theta: float = 10000.0):
    # 计算词向量元素两两分组之后,每组元素对应的旋转角度
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))

    # 生成 token 序列索引 t = [0, 1,..., seq_len-1]
    t = torch.arange(seq_len, device=freqs.device)
    # freqs.shape = [seq_len, dim // 2] 
    freqs = torch.outer(t, freqs).float()
    # torch.polar的文档, https://pytorch.org/docs/stable/generated/torch.polar.html
    # torch.polar输入参数是abs和angle,abs所有值都一样,abs和angle的shape都一样
    # torch.polar输入参数是abs和angle,则freqs_cis = abs*(cos(angle) + sin(angle)i)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    return freqs_cis

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # xq.shape = [batch_size, seq_len, dim]
    # xq_.shape = [batch_size, seq_len, dim // 2, 2]
    xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
    xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
    
    # 转为复数域,  xq_.shape = [batch_size, seq_len, dim // 2]
    xq_ = torch.view_as_complex(xq_)
    xk_ = torch.view_as_complex(xk_)
    # 应用旋转操作,然后将结果转回实数域
    # xq_out.shape = [batch_size, seq_len, dim]
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(2) #从dim=2维度开始拍平
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(2)

    return xq_out.type_as(xq), xk_out.type_as(xk)

if __name__ == '__main__':
    seq_len,dim=3,4
    freqs_cis = precompute_freqs_cis(dim=dim, seq_len=seq_len, theta=10000.0)
    xq = torch.rand(1, seq_len, dim)
    xk = torch.rand(1, seq_len, dim)
    res = apply_rotary_emb(xq, xk, freqs_cis)
    # res的shape是1, seq_len, dim
    
'''
class Attention(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()

        self.wq = Linear(...)
        self.wk = Linear(...)
        self.wv = Linear(...)
        
        self.freqs_cis = precompute_freqs_cis(dim, max_seq_len * 2)

    def forward(self, x: torch.Tensor):
        bsz, seqlen, _ = x.shape
        xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)

        xq = xq.view(batch_size, seq_len, dim)
        xk = xk.view(batch_size, seq_len, dim)
        xv = xv.view(batch_size, seq_len, dim)

        # attention 操作之前,应用旋转位置编码
        xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
        
        # scores.shape = (bs, seqlen, seqlen)
        scores = torch.matmul(xq, xk.transpose(1, 2)) / math.sqrt(dim)
        scores = F.softmax(scores.float(), dim=-1)
        output = torch.matmul(scores, xv)  # (batch_size, seq_len, dim)
  # ......
'''

以下转载自https://kexue.fm/archives/8130#CNN%E5%BC%8F
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值