卡尔曼滤波02

这节课主要内容就是介绍连续随机系统的离散化、连续时间KF和噪声相关的卡尔曼滤波,更多的是一个公式推导,这里就不过多介绍,仅给一个最终结果。

1 连续随机系统的离散化与连续时间KF

1.1 连续时间方程系统离散化

连续时间方程
在这里插入图片描述
离散化后的形式
在这里插入图片描述
其中:
在这里插入图片描述
最终离散化结论
在这里插入图片描述
在这里插入图片描述
一些简单的随机过程离散化
在这里插入图片描述
在这里插入图片描述

1.2 量测方差离散化

量测方程
在这里插入图片描述
离散化结果
在这里插入图片描述
在这里插入图片描述
观测噪声方差阵与离散化间隔有关系,离散化间隔越小,等效的方差应该越大。

1.3 连续时间卡尔曼滤波

在这里插入图片描述
连续时间卡尔曼滤波是个微分方程,获得连续时间卡尔曼滤波结果需要解这个微分方程(矩阵黎卡蒂(Riccati)方程)。
在这里插入图片描述

2 噪声条件下相关的卡尔曼滤波

卡尔曼滤波噪声分为系统噪声和量测噪声,下面就分别讨论他们之间互相相关时的处理方法

2.1 系统噪声与量测噪声相关

在这里插入图片描述
可以将状态方程改写为
在这里插入图片描述
其中J是个待求矩阵。为求这个矩阵对新的系统噪声W进行分析,此时系统噪声与量测噪声的关系是如下式,两者无关需要其等于0,求得J的前提是必须准确知道S,实际情况中S很难获得,所以一般都认为系统噪声与量测噪声不相关。
在这里插入图片描述
在这里插入图片描述
新系统噪声为:
在这里插入图片描述

其滤波过程可以总结为:
在这里插入图片描述

由上可知,当前时刻是由上一时刻推过来的,因为必须有两次观测才能得到结果。

2.2 系统噪声为有色噪声

在这里插入图片描述
系统噪声为有色噪声处理的前提条件是有色部分必须可以建模
此时的处理方式为,对有色噪声进行建模,将其作为参数进行估计
在这里插入图片描述
可以得到滤波模型
在这里插入图片描述

2.3 量测噪声为有色噪声

在实际情况下其实用白噪声去对其进行建模,其结果相差不了多少,不需要考虑是否有色。
在这里插入图片描述
此时有两种解决方法

方法一:与2.2一样对噪声建模

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
通过画红线的地方可以看出此时系统噪声和量测噪声是相关的,要再参考2.1中去相关

方法二 测量求差法

观测噪声模型为:
在这里插入图片描述
前后相邻历元量测求差
在这里插入图片描述
上式的后半部分则是新的量测噪声,是个白噪声。最后得到模型:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值