本文将对“极小极大(Minimax)”与“极大极小(Maxmini)”原理进行整理分析,并探讨其在游戏设计中的应用,最后基于该原理设计一款新游戏的基本概念。
1. 学习与总结
概念简述:
- 极小极大(Minimax)与极大极小(Maxmini)都是从博弈论中衍生的决策理论方法,源自冯·诺伊曼的研究。
- 它们通常应用于博弈决策过程中,用以在不确定且对立的环境中选择最优策略。
- 在零和博弈中,极小极大是基础定理,每个参与者会通过最大化自身最小收益或最小化对手最大收益来寻找均衡点。极小极大策略的结果往往趋近于“纳什均衡”——一个没有任一方参与者有动力单方面改变策略的稳定状态。
- 极小极大与极大极小本质上都是在不确定与对抗环境下的“保守最优策略”——即在未知的对方行动或外在不确定性下,选择一条让自己在最坏情况下仍能把损失降到最低、或把最小收益提高到最高的道路。
区别与联系:
- 极小极大(Minimax):多见于零和博弈中,决策者的目标是最小化对手可能获得的最大收益,从而在对抗性的格局下保障自身优势。这种策略更偏向“机会主义”或“进攻性”,他们在乎对手得不到更多收益,即使这有时并非能使自己收益最大,但能削弱对手的潜在上限。
- 极大极小(Maxmini):多见于非零和博弈或不确定风险情形下,决策者希望在不利的境况下仍能确保自身利益的下限,换言之,最大化自己的最小收益。这类决策更偏保守和防御性,偏向于避免最坏结果的出现。
适用范围:
- 极小极大常应用在如国际象棋等零和、完全信息博弈中,玩家在可预测的对手策略下,通过逆推对手的策略,来确保自身在对手最优反应下仍有满意结果。
- 极大极小更适合一些不确定环境下的风险规避决策场景,如投资决策、自然环境影响下的行为选择,以及非零和博弈下需要保本的策略选择。
2. 在游戏设计中的应用
在游戏设计中,应用极小极大/极大极小原理可以帮助设计者:
-
设计AI决策逻辑:
对于棋类、卡牌对战、策略对战等AI玩家,可采用极小极大算法对可能的后续局面进行评估。AI通过对玩家所有可能动作的逆向推导,寻找一条能最大化己方在最坏情况下收益的决策,从而显得“聪明”。 -
平衡机制设计:
在多人对抗游戏中,可以通过设定一些规则使得玩家的策略趋向稳态的纳什均衡。例如游戏中资源分配、对抗数值平衡,使得任何单一玩家都不愿单方面改变策略,从而实现游戏的长期平衡和公平性。 -
引导玩家决策行为:
将极小极大思想融入关卡设计,让玩家在决策时面临不对称信息和风险评估。例如一个关卡中:- 玩家可选择高风险高收益的路线(可能极大极小心态的人会倾向不选择,因为害怕最坏情况),或者
- 选择稳定低收益但保证下限的路线(极大极小策略)。
这样玩家的决策会丰富,增加游戏的策略深度和重玩性。
3. 用该原理设计一款新游戏的概念
游戏类型: 策略类对抗桌面游戏(或数码化的策略卡牌游戏)
玩家人数: 2-4人
背景设定: 玩家扮演未来世界的领主,管理自己的城市资源(经济、军队、声望)。场景中有一些公共资源点(例如贸易航道、领土边界、科技核心),以及不确定的风险事件(突袭的匪帮、自然灾害、市场崩盘)。游戏的目标是在有限回合内最大化自己的收益,但要同时提防对手的行动与外在风险事件的影响。
核心机制设计思路:
-
回合决策(决策树与极小极大应用):
每个回合,玩家需在多种策略中做出选择,比如:- “扩张领土”:高风险高收益,如果对手也扩张,会形成零和博弈局面,你需要预测对手的选择,若对手不扩张而保守发展,那么你的扩张会受阻甚至亏损。
- “固守经营”:低风险低收益,但能确保基本收益,保证最低的回报不被抹消。在不确定对手进攻性的情况下,这种选择符合极大极小原则,让玩家能最大化自己的最小收益。
每个策略都有清晰的收益、成本和可能的对手反应。玩家需要在有限信息下试图预测对手行动,并以极小极大或极大极小的思路选择策略。
-
信息不对称与不确定性事件:
- 存在隐藏事件卡,如市场崩盘或自然灾害,它们在特定回合随机出现,这为游戏增加不确定性,使得玩家更倾向保守策略(极大极小),而较有冒险精神和信息优势的玩家则会利用极小极大策略压制他人。
-
反馈回路与纳什均衡:
- 设计规则使得过度进攻或过度防守的玩家在后期受限,例如:
- 过于激进的玩家可能很快消耗资源,对手可通过极小极大策略在合适的时机反击,锁死进攻者的收益。
- 过于保守的玩家在后期会缺乏竞争力,但在不利状况下至少不会一败涂地,形成一种动态的战略平衡状态。
游戏通过不断的决策和反决策,引导玩家逐渐找到一个既不盲目冒险又不完全保守的纳什均衡点。
- 设计规则使得过度进攻或过度防守的玩家在后期受限,例如:
胜利条件:
在若干回合结束后,以资源总量、领土大小、科技水平等指标综合评估,最高得分者胜出。在此过程中,玩家需要运用极大极小或极小极大的策略思维来保护最低收益或降低对手的潜在最大收益,从而获得最终胜利。
原理 16 “极小极大”与“极大极小”
与“最小/最大化”(Min/Maxing)不同,“极小极大”(Minimax)是由约翰·冯·锘伊曼(John von Neumann)提出的概念,它指出,在一个零和博弈中,每个博穿者会选择一个能最大化他们回报的混合策略,由此产生的策略和回报的组合是帕累托最优的《参奥原理 19“得益”,原理 18“帕累托最优”和原理 100“零和弈”)。在经济博穿论中,极小极大原理常被用来减低机会成本(也就是后悔)。
根据冯·诺伊曼的观点,这个定理是所有现代博论的基础。这个定理反过来就是“极大极小”(Maximin),它应用于非零和博弈(non-zero sum games)。极大极小原理解决的问题是玩家致力于防止最差的后果,想要避免错误决定导致的最坏结果。总的来说,极小极大和极大极小几乎是相同形式的理性自利,博者都认为他们做出正确的决定来保证自己的成功。
极小极大。选择这个策略的人是机会主义者或乐观主义者,他们的决策目标是让对手得到最小回报。他们并不见得总是选择让自己获得最大成功的选项,因为那不一定能减少他们对手的收益。他们的选择将永远是“纳什均衡”(参见原理17“纳什均衡”)。
极大极小。选择这个策略的是杞人忧天者或悲观主义者,他们会做出保守的决定来避免自己得到负面的回报。他们倾向于选择最不会带来可怕失败后果的选项这些人是那种宁愿把钱存在银行里,不会去投入股市承担风险的类型,他们甚车会担心银行倒闭而选择把钱藏在床垫下。他们关心的是将他们的最小收益最大化在数学上,极小极大算法是一个递归算法,用来在参与人数确定(通常是两个)的博弈中做出下一步的决定。博弈的每一个参与者的每一个可能状态都被赋子了一个通过位置估算函数计算的值,这个值表示玩家要如何成功才能达到该位置。根据函数,理性的极小极大博弈者将基于对手下一步的可能决策和预设值,做出让该位置上最小值最大化的决策。
极小极大也被应用于没有其他对手,但结果取决于不可预知事件情形下的决策。它帮助人们在自然、偶然的机会,或环境影响下的决策,比如决定要不要投资一个高风险的股票,如果该公司成功了,投资者将获得极可观的收益:如果失败了,这个投资将一败涂地。在这样的情形下,可能出现的结果与有两个参与者的零和博类似。