【游戏设计原理】100 - 零和博弈

在这里插入图片描述
上面的零和博弈(Zero-Sum Game)原理在游戏设计中的应用,尤其是在设计对抗性、策略性和多玩家互动的游戏时,可以提供几个关键的启示:

1. 设计公平的竞争机制

零和博弈中的核心思想是玩家之间的得失是相抵消的,这可以帮助设计一种公平的竞争环境。在多玩家对抗游戏中,确保每个玩家的输赢与其他玩家直接相关,避免出现“一个玩家赢,其他玩家都不输”的局面,可以增强玩家的紧张感和参与感。例如,对抗性游戏(如战斗竞技场、策略卡牌游戏)通常使用类似零和博弈的规则,确保每个玩家的胜负都直接影响其他玩家。

启示:游戏设计者可以使用零和博弈的规则来保证游戏中的平衡,使得玩家的胜利与其他玩家的失败紧密挂钩,从而激发更高的竞技精神。

2. 设计多层次策略

零和博弈中的“混合策略”概念,即通过随机选择不同的行动来打破对手的预测,并提高最小回报,可以应用于多局比赛或策略游戏中。比如在卡牌游戏对战游戏中,通过引入不可预测的策略,使得玩家需要不断适应对手的策略,而不仅仅是机械地重复单一的动作或选择。

启示:在游戏设计中,可以鼓励玩家通过多样化的策略来增加游戏的深度和复杂性,让玩家不至于仅依靠简单的重复行为获胜,而是必须考虑长期的策略布局和对手行为的变化。

3. 混合策略与随机元素

在“石头剪刀布”中,混合策略的核心是随机化选择,使得每个玩家的最坏情况都变得更好。这个概念可以被用来设计不可预测的游戏元素,例如通过引入随机事件、道具或敌人的行为,使玩家始终保持紧张感和挑战性。例如,RPG游戏中可能加入随机掉落的物品,或是战术游戏中增加不可预知的敌人行为模式,使游戏保持不确定性和吸引力。

启示:设计游戏时,可以通过引入随机事件动态变化的游戏规则来增强游戏的多样性,使得每场对局都与上一次不同,防止玩家因熟悉规则而感到单调。

4. 非零和博弈的合作与冲突

零和博弈的反面——非零和博弈,强调多个玩家可能同时获胜或失利。在某些合作型游戏(如合作解谜游戏或团队竞技游戏)中,设计者可以利用这一思想,鼓励玩家之间的合作而非单纯对抗。例如,在一些多人合作游戏中,团队的整体得失可能决定游戏的胜负,提升了团队之间的协调与协作。

启示:设计团队合作类游戏时,可以通过引入资源共享合作任务等元素,让玩家体验到“非零和博弈”的平衡,即每个人都能从合作中获益,而不是纯粹依赖彼此对抗。

5. 玩家行为的预测与反预测

在零和博弈中,玩家通常会采取混合策略,旨在打破对手的预期。在游戏设计中,可以设计系统来鼓励玩家思考对手的策略,并根据对方的行为做出反应。这种心理博弈的设计不仅提升了游戏的策略性,还能增强玩家的社交互动。例如,在MOBA战术类游戏中,玩家不断猜测对方的战术意图,并制定反策略。

启示:通过设计可以反制对方行为的机制,增强游戏中的“心理博弈”体验,提升玩家间的智力对抗。此类设计可以增加玩家的沉浸感,并激励他们思考并提前预测对手的行动。

6. 极小极大策略与游戏平衡

在零和博弈中,使用“极小极大”策略可以帮助优化最坏情况,确保每个玩家在多局比赛中获得的最小得益。游戏设计者可以将这一策略应用到角色能力、武器平衡、经济系统等方面,确保游戏内的不同元素不会因为某一因素而导致某方过于强大,从而破坏游戏的平衡性。

启示:通过设计极小极大的平衡系统(如角色或技能的平衡、装备的选择等),可以避免单一策略主导游戏,增加游戏的多样性和长期可玩性。

总的来看

零和博弈的原理为游戏设计提供了关于公平竞争、策略多样性、合作与冲突平衡等方面的深刻启示。通过利用混合策略、非零和博弈的合作元素以及玩家间的心理博弈,设计师可以创造更加复杂且有深度的游戏体验,提升游戏的趣味性和玩家的参与度。


原文:

原理100 零和博弈原理

在一个零和博弈中,获胜方的收益与失败方的损失完全相抵消。如果某种可能的结果中,得失不是相抵的,那么这就不是一个零和博弈。

示例1:扑克牌游戏

扑克牌游戏是一个典型的零和博弈。任何一名玩家的收益都与另一名玩家的损失相匹配。例如,在一场下注的游戏中,玩家既不能赢得超过下注金额的钱,也不可能输掉超过下注金额的钱。因此,输赢比例是固定的,且所有结果都符合“帕累托最优”(详见原理18“帕累托最优”)。

示例2:石头剪刀布

“石头剪刀布”游戏也是一个零和博弈。在每次对局中,要么一个人赢一个人输,要么平局。以下是每局游戏中得益的总和:

石头剪刀
石头平局 (0,0)布胜 (-1,1)石头胜 (1,-1)
布胜 (1,-1)平局 (0,0)剪刀胜 (-1,1)
剪刀石头胜 (1,-1)剪刀胜 (1,-1)平局 (0,0)
非零和博弈示例:囚徒困境

与零和博弈不同,“囚徒困境”中双方可能同时“赢”或“输”,且刑期之和不为零。以下是囚徒困境的收益矩阵:

囚徒B合作囚徒B不合作
囚徒A合作每人6个月 (-1,-1)A获释,B获刑5年 (0,-10)
囚徒A不合作B获释,A获刑5年 (-10,0)每人2年 (-4,-4)
解决方法

零和博弈问题可以通过“纳什均衡”(详见原理17“纳什均衡”)或混合策略来解决。混合策略的核心是通过随机选择不同的策略来提升整体得益。例如,在“石头剪刀布”游戏中,每局比赛随机选择石头、剪刀或布,玩家有三分之一的概率获胜、平局或失败。通过这种方式,可以提高多局游戏中的最小得益率。这种策略被称为“极小极大”,它通过优化最小得益来保障玩家的利益(详见原理16“极小极大和极大极小”)。

非零和博弈的复杂性

相比零和博弈,非零和博弈更复杂,因为多个玩家可能同时获胜或失败。例如,全球热核战争是一个非零和博弈的典型例子:所有参与者都可能输,“游戏”之后没有人能比之前的状态更好。

理论基础

约翰·冯·诺伊曼(John von Neumann)和奥斯卡·摩根斯坦(Oskar Morgenstern)在20世纪中叶的研究表明,每个零和博弈都存在一个“极小极大”的解决方案,即使在纳什均衡不存在的情况下,随机选择的混合策略也总能提升最小回报。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tealcwu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值