卡尔曼滤波(2):卡尔曼滤波与递归计算

1. 卡尔曼解决什么问题

        比较经典的说法是,卡尔曼滤波适用于任何带有不确定性的系统中。那么我们怎么来理解这种不确定性呢?具体来讲,包含以下几种情况。

  1. 当前系统不存在完美的数学表达模型,即不能够通过一些数学方式来表达这个系统。
  2. 当前系统是不可控的,即其中的状态不能通过外部手段来实现精准控制;
  3. 当前系统的状态是不能通过外部手段来精准测量的。

        总结一下,如果一个系统不可表达、不可测量也不可控制,那么可以考虑使用卡尔曼滤波来跟踪系统的状态。

2. 卡尔曼滤波的基础理论依据

        卡尔曼本质上是一种递归算法,即当前状态可以通过估计下一时刻的状态,或者说当前时刻的状态与上一时刻的状态有关联,可以表达为如下的形态。

其中,为t时刻的估计状态,为t-1时刻的状态,k为某种定义的系数,为估计误差。

具体到卡尔曼滤波中来,可以用下面的公式来表达。

,

        其中k为卡尔曼增益,为观测量与预测值的误差。

        在后面的讲解中,我们会发现,参与卡尔曼最优估计计算的并不止形如的观测量与预测量的差,而是需要将状态空间投影到测量空间,在进行误差的计算。

举例来讲:

        对于一个静止的目标,我们需要经过多次测量来获得距离值,那么我们的状态空间和测量空间是一致的,那么我们的误差就可以是观测值与预测值的差,这个时候就是形如的计算

        对于跟踪这个场景,观测点和目标一般是相对移动的,状态空间在设计时与观测空间并不一致,会引入一些运行类型的过程误差,那么我们在计算的时候,需要先进行状态空间与测量空间的转换,得到估计的测量量,然后再进行相应误差的计算。这个时候就是形如的计算。

这个误差很重要,实际上卡尔曼滤波是围绕这个误差在进行循环递推的计算。

3. 递推公式推导

        举一个简单的例子,来演示递推公式的推导。

假如我们需要测量某一物体的长度,这时候我们可以采取多次测量取平均的方式进行,在这里我们要关注两点

(1)我们使用池子进行测量,尺子本身可能不准;

(2)平均值本身就是一种估计值

假设是第k次的测量值,那么我们可以这样取平均。


我们令,得到如下的公式:

,K为卡尔曼增益。

我们称上述公式为最优估计公式,这一公式便是卡尔曼黄金五公式之一。

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值