第5讲、Transformer 编码器(Encoder)处理过程详解

🔍 Transformer 编码器(Encoder)处理过程详解

Transformer Encoder 是一个由 N 层(一般为 6 层)堆叠而成的模块结构。每一层的本质是两个核心子模块:

  1. 多头自注意力(Multi-Head Self-Attention)
  2. 前馈神经网络(Feed Forward Network)

每个子模块都通过:

  • 残差连接(Residual Connection)
  • 层归一化(LayerNorm)
    进行包裹与标准化,保持训练稳定性。

🧭 总体流程图解(以一层为例)

嵌入输入
   │
+───> 位置编码(Position Encoding)
   │
   ▼
输入表示(X) → ┐
                 │
        多头自注意力(Self-Attention)
                 │
     + Residual + LayerNorm(第一步)
                 ▼
      前馈神经网络(Feed Forward)
                 │
     + Residual + LayerNorm(第二步)
                 ▼
           输出 H1(传入下一层)

🧱 输入嵌入层(Input Embedding + Position Encoding)

  • 每个输入 token 首先通过词向量矩阵映射为一个固定维度向量(如 512维)。
  • 然后加上 位置编码(固定正余弦或可学习向量),使模型具备位置信息。


🧠 第一子模块:多头自注意力 Multi-Head Self-Attention

📌 自注意力(Self-Attention)核心思想:

每个词在计算时都可以关注句中其他所有词,捕捉到全局语义信息。

🧮 计算过程:

✅ 作用:

  • 让每个词语动态地感知上下文语义
  • 多头机制让模型从多个表示子空间学习依赖关系

🔁 残差连接 + LayerNorm(第一次)

自注意力输出后,加入输入值(残差连接),再做归一化:

✅ 目的:

  • 防止训练过程中的梯度消失
  • 保持信息流动稳定
  • LayerNorm 保证激活值分布统一,提升收敛速度

🧮 第二子模块:前馈神经网络 Feed Forward

📌 结构:

每个位置上的 token 单独经过一个两层的全连接网络(MLP):

虽然是点对点操作,但提供了非线性特征转换能力。

✅ 特点:

  • 输入维度保持不变(如 512 → 2048 → 512)
  • 提升模型表达能力与抽象能力

🔁 残差连接 + LayerNorm(第二次)

对 FFN 输出再做一次残差与归一化:


🔄 多层堆叠(Layer Stacking)

Encoder 模块通常堆叠 6 层(或更多),形成深度网络:

Input → EncoderLayer × N → Encoder Output

每层都重复上述两步:自注意力 → FFN,逐层提炼抽象特征。


📤 最终输出

Encoder 最终输出是一个张量:

  • 形状为 [batch_size, seq_len, d_model]
  • 每个 token 都被映射为一个"上下文增强"的向量表示

这个输出将供 Decoder 或下游任务使用(如分类、问答、生成等)。


📌 小结:每一层 Encoder 的设计哲学

组件作用
Position Encoding弥补无序缺陷,提供位置信息
Self-Attention捕捉词与词之间全局依赖
Feed Forward增强模型非线性表达能力
Residual Connection保持信息路径,减缓梯度消失
LayerNorm保证数值稳定,加快训练

✅ Encoder 是一个结构精巧的"信息提炼器",将原始嵌入压缩为包含上下文的丰富表示,是 Transformer 模型成功的根本所在。


🧑‍💻 PyTorch 代码实现与详细讲解

下面以 PyTorch 为例,逐步实现 Transformer 编码器的各个核心模块,并结合代码详细说明其原理与设计。

1. 输入嵌入与位置编码

import torch
import torch.nn as nn

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(10000.0)) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)  # [1, max_len, d_model]
        self.register_buffer('pe', pe)

    def forward(self, x):
        # x: [batch_size, seq_len, d_model]
        x = x + self.pe[:, :x.size(1)]
        return x

class InputEmbedding(nn.Module):
    def __init__(self, vocab_size, d_model):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoding = PositionalEncoding(d_model)

    def forward(self, x):
        x = self.embedding(x)  # [batch, seq_len, d_model]
        x = self.pos_encoding(x)
        return x

讲解

  • InputEmbedding 将 token id 映射为向量,并加上位置编码,补充序列顺序信息。
  • PositionalEncoding 用正余弦函数实现,保证不同位置有唯一编码。

2. 多头自注意力机制

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super().__init__()
        assert d_model % num_heads == 0
        self.d_k = d_model // num_heads
        self.num_heads = num_heads
        self.qkv_linear = nn.Linear(d_model, d_model * 3)
        self.out_linear = nn.Linear(d_model, d_model)

    def forward(self, x, mask=None):
        batch_size, seq_len, d_model = x.size()
        qkv = self.qkv_linear(x)  # [batch, seq_len, 3*d_model]
        qkv = qkv.reshape(batch_size, seq_len, 3, self.num_heads, self.d_k)
        qkv = qkv.permute(2, 0, 3, 1, 4)  # [3, batch, heads, seq_len, d_k]
        q, k, v = qkv[0], qkv[1], qkv[2]

        scores = torch.matmul(q, k.transpose(-2, -1)) / self.d_k ** 0.5  # [batch, heads, seq_len, seq_len]
        if mask is not None:
            scores = scores.masked_fill(mask == 0, float('-inf'))
        attn = torch.softmax(scores, dim=-1)
        context = torch.matmul(attn, v)  # [batch, heads, seq_len, d_k]
        context = context.transpose(1, 2).reshape(batch_size, seq_len, d_model)
        out = self.out_linear(context)
        return out

讲解

  • Q、K、V 通过线性变换获得,分多头并行计算注意力。
  • 每个头可关注不同子空间的依赖,最后拼接。
  • mask 用于屏蔽无效位置(如 padding)。

3. 前馈神经网络

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(d_ff, d_model)

    def forward(self, x):
        return self.linear2(self.relu(self.linear1(x)))

讲解

  • 两层全连接+ReLU,提升非线性表达能力。
  • 逐位置独立处理,不引入序列间交互。

4. 残差连接与 LayerNorm

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff):
        super().__init__()
        self.self_attn = MultiHeadSelfAttention(d_model, num_heads)
        self.norm1 = nn.LayerNorm(d_model)
        self.ffn = FeedForward(d_model, d_ff)
        self.norm2 = nn.LayerNorm(d_model)

    def forward(self, x, mask=None):
        # Self-Attention + Residual + Norm
        attn_out = self.self_attn(x, mask)
        x = self.norm1(x + attn_out)
        # FFN + Residual + Norm
        ffn_out = self.ffn(x)
        x = self.norm2(x + ffn_out)
        return x

讲解

  • 每个子模块后都加残差和 LayerNorm,保证梯度流动和数值稳定。
  • 先自注意力,再前馈网络。

5. 编码器整体结构

class TransformerEncoder(nn.Module):
    def __init__(self, vocab_size, d_model, num_heads, d_ff, num_layers):
        super().__init__()
        self.embedding = InputEmbedding(vocab_size, d_model)
        self.layers = nn.ModuleList([
            EncoderLayer(d_model, num_heads, d_ff) for _ in range(num_layers)
        ])

    def forward(self, x, mask=None):
        x = self.embedding(x)
        for layer in self.layers:
            x = layer(x, mask)
        return x  # [batch, seq_len, d_model]

讲解

  • 多层 EncoderLayer 堆叠,每层提炼更高层次特征。
  • 输出为每个 token 的上下文增强表示。

总结

  • 输入嵌入+位置编码:为每个 token 提供唯一、可区分的向量表示。
  • 多头自注意力:全局建模 token 间依赖,多头提升表达力。
  • 前馈网络:增强非线性特征转换。
  • 残差+LayerNorm:稳定训练,防止梯度消失。
  • 多层堆叠:逐层抽象,获得丰富的上下文表示。

🧑‍💻 Streamlit Transformer Encoder 可视化案例(PyTorch版)

完整案例代码

import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# 1. 输入嵌入与位置编码
st.header("1. 输入嵌入与位置编码")
st.markdown("""
**要做的事情**:将输入的token序列映射为向量,并加上位置编码。  
**作用**:让模型既能理解词语含义,又能感知顺序信息。
""")

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=50):
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.pe = pe.unsqueeze(0)  # [1, max_len, d_model]

    def forward(self, x):
        return x + self.pe[:, :x.size(1)]

vocab_size, d_model, seq_len = 20, 8, 10
embedding = nn.Embedding(vocab_size, d_model)
pos_encoding = PositionalEncoding(d_model, max_len=seq_len)

tokens = torch.randint(0, vocab_size, (1, seq_len))
embed = embedding(tokens)
embed_pos = pos_encoding(embed)

fig, ax = plt.subplots(1, 2, figsize=(10, 3))
ax[0].imshow(embed[0].detach().numpy(), aspect='auto')
ax[0].set_title("Token Embedding")
ax[1].imshow(embed_pos[0].detach().numpy(), aspect='auto')
ax[1].set_title("Embedding + PositionalEncoding")
st.pyplot(fig)

# 2. 多头自注意力
st.header("2. 多头自注意力机制")
st.markdown("""
**要做的事情**:让每个token关注序列中其它token,捕捉全局依赖。  
**作用**:模型能理解上下文关系,提升表达能力。
""")

class MultiHeadSelfAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super().__init__()
        assert d_model % num_heads == 0
        self.d_k = d_model // num_heads
        self.num_heads = num_heads
        self.qkv_linear = nn.Linear(d_model, d_model * 3)
        self.out_linear = nn.Linear(d_model, d_model)

    def forward(self, x):
        batch_size, seq_len, d_model = x.size()
        qkv = self.qkv_linear(x)
        qkv = qkv.reshape(batch_size, seq_len, 3, self.num_heads, self.d_k)
        qkv = qkv.permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        scores = torch.matmul(q, k.transpose(-2, -1)) / np.sqrt(self.d_k)
        attn = torch.softmax(scores, dim=-1)
        context = torch.matmul(attn, v)
        context = context.transpose(1, 2).reshape(batch_size, seq_len, d_model)
        out = self.out_linear(context)
        return out, attn

mhsa = MultiHeadSelfAttention(d_model, num_heads=2)
attn_out, attn_weights = mhsa(embed_pos)

fig, ax = plt.subplots(1, 2, figsize=(10, 3))
ax[0].imshow(attn_out[0].detach().numpy(), aspect='auto')
ax[0].set_title("Self-Attention Output")
ax[1].imshow(attn_weights[0][0].detach().numpy(), aspect='auto')
ax[1].set_title("Attention Weights (Head 1)")
st.pyplot(fig)

# 3. 前馈神经网络
st.header("3. 前馈神经网络")
st.markdown("""
**要做的事情**:对每个token的表示做非线性变换。  
**作用**:提升模型的非线性表达能力。
""")

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(d_ff, d_model)

    def forward(self, x):
        return self.linear2(self.relu(self.linear1(x)))

ffn = FeedForward(d_model, d_ff=16)
ffn_out = ffn(attn_out)

fig, ax = plt.subplots()
ax.imshow(ffn_out[0].detach().numpy(), aspect='auto')
ax.set_title("Feed Forward Output")
st.pyplot(fig)

# 4. 残差连接与LayerNorm
st.header("4. 残差连接与LayerNorm")
st.markdown("""
**要做的事情**:每个子模块后加残差和归一化。  
**作用**:防止梯度消失,提升训练稳定性。
""")

layernorm = nn.LayerNorm(d_model)
residual_out = layernorm(embed_pos + attn_out)

fig, ax = plt.subplots()
ax.imshow(residual_out[0].detach().numpy(), aspect='auto')
ax.set_title("Residual + LayerNorm Output")
st.pyplot(fig)

# 5. 多层堆叠
st.header("5. 多层堆叠")
st.markdown("""
**要做的事情**:重复上述结构,逐层提炼特征。  
**作用**:获得更丰富的上下文表示。
""")
st.markdown("(此处可用多层循环堆叠,原理同上,略)")
st.success("案例演示完毕!你可以修改参数、输入等,观察每一步的可视化效果。")



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值