Transformer模型结构分析:Encoder、Decoder以及注意力机制详解

作者:禅与计算机程序设计艺术

1.简介

Transformer模型由论文[1]提出,其基本思想是使用注意力机制代替循环神经网络(RNN)或卷积神经网络(CNN),是一种基于序列到序列(Seq2seq)的机器翻译、文本摘要、对话系统等任务的成功范例。Transformer模型使用全连接层代替RNN和CNN的门控结构,并用多头注意力机制进行了改进,能够在捕捉全局上下文信息的同时,还保持输入输出序列之间的独立性。
  本文将从原理上和代码实现两个角度出发,详细解析Transformer模型的编码器、解码器及注意力机制的设计原理和具体操作步骤。希望读者能够通过本文,更加深入地理解Transformer模型及其相关的数学原理和算法,掌握Transformer模型的工作原理和应用技巧。

2.基本概念术语说明

2.1. 为什么需要注意力机制?

自注意力机制(Self-Attention)是最早被提出的注意力机制。它引入了一个可学习的查询向量和一个键-值对,并计算查询向量和所有键-值对之间的相似性,根据这些相似性调整键-值对之间的权重,最后得到一个新的表示结果。这种注意力机制能够让模型能够捕捉到输入序列的全局信息,并关注其中重要的信息,最终生成更好的输出。
Self-Attention的具体实现可以分为以下两步:
1.首先,对输入序列进行线性变换,转换成较低维度的特征空间;
2.然后,利用注意力矩阵计算每个元素之间的关系,并根据这个矩阵调整键-值对之间的权重;
3.最后,再次线性变换,恢复原始维度并得到新表示结果。
在RNN或者CNN中,通常采用

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
Transformer模型中的Decoder是一个由多个Decoder Layer组成的堆叠结构,每个Decoder Layer包括两个子层:一个自注意力子层和一个前馈子层。Decoder的输入是一个由Encoder输出的上下文向量和一个可变长度的目标序列。Decoder的任务是生成一个与目标序列等长的输出序列,其中每个位置的输出都是基于之前的输出和上下文向量计算得到的。 Decoder的自注意力子层与Encoder的自注意力子层类似,但是在计算注意力权重时,Decoder会对目标序列进行遮挡,以确保模型只关注未来的输入。具体来说,对于位置i,Decoder只会考虑目标序列中在位置j<=i的输入,这种遮挡方式被称为“Masked Self-Attention”。 Decoder的前馈子层包括两个全连接层和一个激活函数,其中第一个全连接层的输出维度与输入维度相同,第二个全连接层的输出维度与模型的隐藏状态维度相同。这样做的目的是扩展模型的表示能力,提高模型在序列生成任务上的性能。 在Decoder中,每个位置的输出都是基于之前的输出和上下文向量计算得到的。具体来说,对于位置i,Decoder会首先将上一时刻的输出作为输入,并且计算出一个上下文向量,然后使用该向量和目标序列中第i个位置的输入作为输入,计算出该位置的输出。这个过程可以通过堆叠多个Decoder Layer来增强模型的表示能力,从而提高模型在序列生成任务上的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

禅与计算机程序设计艺术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值