《高等数学》学习笔记一:函数与极限

自学的,随便看看就行(
以前写的高中数学选修2-2学习笔记,也可以看看,不过是一些比较基础的东西,对做题没太大帮助(

一、函数与极限

1.1 函数的极限

1.1.1 函数极限的定义

1.1.1.1 相关定义

邻域: ( x 0 − δ , x 0 + δ ) (x_0-\delta,x_0+\delta) (x0δ,x0+δ)称为以 x 0 x_0 x0为中心,半径为 δ \delta δ的邻域。
去心邻域: ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) (x_0-\delta,x_0)\cup(x_0,x_0+\delta) (x0δ,x0)(x0,x0+δ)称为去心邻域(相当于邻域挖掉了中心)
邻域也可表示为 0 ≤ ∣ x − x 0 ∣ < δ 0\le |x-x_0|<\delta 0xx0<δ,去心邻域也可表示为 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ

反三角函数是三角函数(在某个定义域上)的反函数。举例:
y = sin ⁡ x y=\sin x y=sinx是三角函数,如果此时我们要用 y y y表示 x x x,可以表示为 x = arcsin ⁡ y x=\arcsin y x=arcsiny
显然三角函数值域为 [ − 1 , 1 ] [-1,1] [1,1],即 y ∈ [ − 1 , 1 ] y\in [-1,1] y[1,1]。但是一个三角函数值可以对应无数个角。
我们发现: [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π,2π]内任意两角 sin ⁡ \sin sin不同, [ 0 , π ] [0,\pi] [0,π]内任意两角 cos ⁡ \cos cos不同, [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π,2π]内任意两角 tan ⁡ \tan tan不同。
因此规定在 [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π,2π] sin ⁡ \sin sin值(或 tan ⁡ \tan tan值)分别等于 y y y x x x,记作 x = arcsin ⁡ y x=\arcsin y x=arcsiny(或 x = arctan ⁡ y x=\arctan y x=arctany arctan ⁡ \arctan arctan的值域要挖去 ± π 2 \pm\frac{\pi}{2} ±2π)。
[ 0 , π ] [0,\pi] [0,π] cos ⁡ \cos cos值为 y y y x x x,满足 x = arccos ⁡ y x=\arccos y x=arccosy

一些奇怪的性质:
1. sin ⁡ ( arcsin ⁡ x ) = cos ⁡ ( arccos ⁡ x ) = tan ⁡ ( arctan ⁡ x ) = x 1.\sin(\arcsin x)=\cos(\arccos x)=\tan(\arctan x)=x 1.sin(arcsinx)=cos(arccosx)=tan(arctanx)=x(大概是很显然的

2. sin ⁡ ( arccos ⁡ x ) = cos ⁡ ( arcsin ⁡ x ) = 1 − x 2 2.\sin(\arccos x)=\cos(\arcsin x)=\sqrt{1-x^2} 2.sin(arccosx)=cos(arcsinx)=1x2
证明:令 t = arccos ⁡ x t=\arccos x t=arccosx,则 x = cos ⁡ t x=\cos t x=cost t ∈ [ 0 , π ] t\in[0,\pi] t[0,π]。在此区间内 sin ⁡ t ≥ 0 \sin t\ge 0 sint0,因此 sin ⁡ t = 1 − cos ⁡ 2 t = 1 − x 2 \sin t=\sqrt{1-\cos^2t}=\sqrt{1-x^2} sint=1cos2t =1x2
m = arcsin ⁡ x m=\arcsin x m=arcsinx,则 x = sin ⁡ m x=\sin m x=sinm m ∈ [ − π 2 , π 2 ] m\in[-\frac{\pi}{2},\frac{\pi}{2}] m[2π,2π]。在此区间内 cos ⁡ m ≥ 0 \cos m\ge 0 cosm0,因此 cos ⁡ m = 1 − sin ⁡ 2 m = 1 − x 2 \cos m=\sqrt{1-\sin^2m}=\sqrt{1-x^2} cosm=1sin2m =1x2

3. y = arcsin ⁡ x 3.y=\arcsin x 3.y=arcsinx,则 y ′ = 1 1 − x 2 y'=\frac{1}{1-x^2} y=1x21。(目前超纲*)
证明:由 y = arcsin ⁡ x y=\arcsin x y=arcsinx x = sin ⁡ y x=\sin y x=siny。两边同时加上 d d x \frac{d}{dx} dxd(即同时对 x x x求导)得:
d x d x = d sin ⁡ y d x \frac{dx}{dx}=\frac{d\sin y}{dx} dxdx=dxdsiny
左边化简得1,右边变形得: 1 = d sin ⁡ y d y ∗ d y d x 1=\frac{d\sin y}{dy}*\frac{dy}{dx} 1=dydsinydxdy
我们知道 sin ⁡ x \sin x sinx导数是 cos ⁡ x \cos x cosx,因此 d sin ⁡ y d y = cos ⁡ y \frac{d\sin y}{dy}=\cos y dydsiny=cosy。而 d y d x \frac{dy}{dx} dxdy就是 y y y x x x的导数,即 y ′ y' y
所以 y ′ = 1 cos ⁡ y = 1 cos ⁡ ( arcsin ⁡ x ) = 1 1 − x 2 y'=\frac{1}{\cos y}=\frac{1}{\cos(\arcsin x)}=\frac{1}{\sqrt{1-x^2}} y=cosy1=cos(arcsinx)1=1x2 1

4. y = arccos ⁡ x 4.y=\arccos x 4.y=arccosx,则 y ′ = − 1 1 − x 2 y'=-\frac{1}{\sqrt{1-x^2}} y=1x2 1(证明方法类似
5. y = arctan ⁡ x 5.y=\arctan x 5.y=arctanx,则 y ′ = 1 1 + x 2 y'=\frac{1}{1+x^2} y=1+x21

1.1.1.2 函数趋于某个实数的极限

极限有两种情况:一种是趋于某个实数的极限,另一种是趋于无穷的极限。
先考虑趋于某个实数的情况:
假设有一个函数 f ( x ) f(x) f(x),它在 x 0 x_0 x0的某去心邻域上有定义。
f ( x ) f(x) f(x) x 0 x_0 x0处极限为 A A A的定义为: ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ δ > 0 \exist\delta>0 δ>0,使 ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) (x_0-\delta,x_0)\cup(x_0,x_0+\delta) (x0δ,x0)(x0,x0+δ)内,满足 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
此时记为: lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A xx0limf(x)=A
看起来很恐怖,其实很简单:就是在 x 0 x_0 x0附近的点的函数值都不离 A A A太远。
下面来证明几个显然的极限:
1. f ( x ) = c f(x)=c f(x)=c ( c c c为常数)。证明 lim ⁡ x → x 0 f ( x ) = c \lim\limits_{x\to x_0}f(x)=c xx0limf(x)=c
证明:对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,任取 δ > 0 \delta>0 δ>0,在 ( x 0 − δ , x 0 ) ∪ ( x 0 , x 0 + δ ) (x_0-\delta,x_0)\cup(x_0,x_0+\delta) (x0δ,x0)(x0,x0+δ)内, ∣ f ( x ) − c ∣ = ∣ c − c ∣ = 0 < ϵ |f(x)-c|=|c-c|=0<\epsilon f(x)c=cc=0<ϵ
因此 lim ⁡ x → x 0 f ( x ) = c \lim\limits_{x\to x_0}f(x)=c xx0limf(x)=c

2. f ( x ) = 114 x + 514 f(x)=114x+514 f(x)=114x+514,证明 lim ⁡ x → 0 f ( x ) = 514 \lim\limits_{x\to 0}f(x)=514 x0limf(x)=514(好时代,来临罢!)
分析:这看起来很显然(代入0就是514),但如何取这个 δ \delta δ?我们不妨倒推,如果要想让 ∣ f ( x ) − 514 ∣ < ϵ |f(x)-514|<\epsilon f(x)514<ϵ,就要让 ∣ 114 x ∣ < ϵ |114x|<\epsilon 114x<ϵ,即 ∣ x ∣ < ϵ 114 |x|<\frac{\epsilon}{114} x<114ϵ,也就是 ∣ x − 0 ∣ < ϵ 114 |x-0|<\frac{\epsilon}{114} x0<114ϵ
那么我们取 δ = ϵ 114 \delta=\frac{\epsilon}{114} δ=114ϵ就好。

证明:对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,取 δ = ϵ 114 \delta=\frac{\epsilon}{114} δ=114ϵ,在 ( − δ , 0 ) ∪ ( 0 , δ ) (-\delta,0)\cup(0,\delta) (δ,0)(0,δ)内, ∣ f ( x ) − 514 ∣ = ∣ 114 x ∣ |f(x)-514|=|114x| f(x)514=114x
由于 ∣ x ∣ < δ = ϵ 114 |x|<\delta=\frac{\epsilon}{114} x<δ=114ϵ,所以 ∣ f ( x ) − 514 ∣ = 114 ∣ x ∣ < ϵ |f(x)-514|=114|x|<\epsilon f(x)514=114x<ϵ
因此 lim ⁡ x → 0 f ( x ) = 514 \lim\limits_{x\to 0}f(x)=514 x0limf(x)=514。(Q.E.D)

判断:已知 f ( x ) f(x) f(x) x 0 x_0 x0处有定义且极限存在,那么 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)
这是非常错误的(rxj化),因为 f ( x ) f(x) f(x)可以在 x 0 x_0 x0处不连续 /jy
比如当 x < 0 x<0 x<0 x > 0 x>0 x>0时, f ( x ) = x f(x)=x f(x)=x;当 x = 0 x=0 x=0时, f ( x ) = 1919810 f(x)=1919810 f(x)=1919810。(无端恶臭)
那么 lim ⁡ x → 0 f ( x ) = 0 \lim\limits_{x\to 0}f(x)=0 x0limf(x)=0,但是 f ( 0 ) = 1919810 f(0)=1919810 f(0)=1919810,二者并不相等。

左极限:若 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ δ > 0 \exist\delta>0 δ>0,在 x ∈ ( x 0 − δ , x 0 ) x\in(x_0-\delta,x_0) x(x0δ,x0)时, ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,则把 A A A称为 f ( x ) f(x) f(x) x 0 x_0 x0处的左极限,记为 lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x\to x_0^{-}}f(x)=A xx0limf(x)=A
右极限:若 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ δ > 0 \exist\delta>0 δ>0,在 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x(x0,x0+δ)时, ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,则把 A A A称为 f ( x ) f(x) f(x) x 0 x_0 x0处的右极限,记为 lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_0^{+}}f(x)=A xx0+limf(x)=A
可以看出,左极限和右极限与极限的定义基本相同,只是改了个定义域。
易知:函数极限存在的充要条件,就是左极限和右极限都存在,且左右极限相等(就是取个并集嘛

举例: f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,求导得 f ′ ( x ) f'(x) f(x),那么 lim ⁡ x → 0 − f ′ ( x ) = − 1 \lim\limits_{x\to 0^-}f'(x)=-1 x0limf(x)=1 lim ⁡ x → 0 + f ′ ( x ) = 1 \lim\limits_{x\to 0^+}f'(x)=1 x0+limf(x)=1,左右极限不相等,所以 f ′ ( x ) f'(x) f(x) x = 0 x=0 x=0处的极限不存在。

1.1.1.3 函数趋于无穷的极限

f ( x ) f(x) f(x)趋于无穷时极限为 A A A的定义为: ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ X > 0 \exist X>0 X>0,使 ∣ x ∣ > X |x|>X x>X时,有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
其实也很简单:当 ∣ x ∣ |x| x大到一定程度时, f ( x ) f(x) f(x)就不能离 ∣ A ∣ |A| A太远。
注意这里的无穷可以是正无穷也可以是负无穷,因此 x x x的范围要加绝对值。
同样来证明一些显然的东西:证明 lim ⁡ x → ∞ 1 x = 0 \lim\limits_{x\to \infin}\frac{1}{x}=0 xlimx1=0
证:对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0,取 X = 1 ϵ X=\frac{1}{\epsilon} X=ϵ1,则当 ∣ x ∣ > X = 1 ϵ |x|>X=\frac{1}{\epsilon} x>X=ϵ1时, ∣ f ( x ) − 0 ∣ = ∣ 1 x ∣ < ϵ |f(x)-0|=|\frac{1}{x}|<\epsilon f(x)0=x1<ϵ
因此 lim ⁡ x → ∞ 1 x = 0 \lim\limits_{x\to \infin}\frac{1}{x}=0 xlimx1=0

1.1.2 函数极限的性质

1.函数在某个点上的极限唯一。(难道能既趋近114又趋近514吗(无慈悲

2.局部有界性:若 lim ⁡ x → x 0 = A \lim\limits_{x\to x_0}=A xx0lim=A,则 ∃ M > 0 , δ > 0 \exist M>0,\delta>0 M>0,δ>0,对于 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ,有 ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M。( M M M就是“界”)
证明也简单:由 lim ⁡ x → x 0 = A \lim\limits_{x\to x_0}=A xx0lim=A可得 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ δ > 0 \exist\delta>0 δ>0,在 0 < ∣ x − x 0 ∣ < ϵ 0<|x-x_0|<\epsilon 0<xx0<ϵ时,有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
那么我们任取一个 ϵ \epsilon ϵ,找到使后面那坨成立的 δ \delta δ。由绝对值三角不等式, ∣ f ( x ) ∣ = ∣ f ( x ) − A + A ∣ ≤ ∣ f ( x ) − A ∣ + ∣ A ∣ < ϵ + A |f(x)|=|f(x)-A+A|\le|f(x)-A|+|A|<\epsilon+A f(x)=f(x)A+Af(x)A+A<ϵ+A
于是取 M = ϵ + A M=\epsilon+A M=ϵ+A即可使 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ ∣ f ( x ) ∣ ≤ M |f(x)|\le M f(x)M

3.局部保号性(zjm狂喜):若 lim ⁡ x → x 0 f ( x ) = A > 0 \lim\limits_{x\to x_0}f(x)=A>0 xx0limf(x)=A>0,则 ∃ δ > 0 \exist \delta>0 δ>0,使 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, f ( x ) > 0 f(x)>0 f(x)>0。(大于0就是“保号”,小于0同理)
证明:取 ϵ = A \epsilon=A ϵ=A

注:高考导数大题用局部保号性要被扣分,但如果只剩三分钟了那你尽管用(

4.假设数列 { a n } \{a_n\} {an}满足 lim ⁡ n → + ∞ a n = x 0 \lim\limits_{n\to +\infin}a_n=x_0 n+liman=x0(数列极限见1.2),且 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A,则 lim ⁡ n → + ∞ f ( a n ) = A \lim\limits_{n\to+\infin}f(a_n)=A n+limf(an)=A
证明:由 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A可知,任取 ϵ > 0 \epsilon>0 ϵ>0 ∃ δ > 0 \exist\delta>0 δ>0,对于 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ,满足 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
lim ⁡ n → + ∞ a n = x 0 \lim\limits_{n\to+\infin}a_n=x_0 n+liman=x0可知,取 ϵ ′ = δ \epsilon'=\delta ϵ=δ ∃ n 0 ∈ Z + \exist n_0\in \Z^+ n0Z+,使 n > n 0 n>n_0 n>n0时, ∣ a n − x 0 ∣ < ϵ ′ = δ |a_n-x_0|<\epsilon'=\delta anx0<ϵ=δ。则此时 ∣ f ( a n ) − A ∣ < ϵ |f(a_n)-A|<\epsilon f(an)A<ϵ
因此 lim ⁡ n → + ∞ f ( a n ) = A \lim\limits_{n\to+\infin}f(a_n)=A n+limf(an)=A

5.夹逼定理:假设 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\le f(x)\le h(x) g(x)f(x)h(x) x 0 x_0 x0的某个去心邻域内成立,且 lim ⁡ x → x 0 g ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim\limits_{x\to x_0}g(x)=\lim\limits_{x\to x_0}h(x)=A xx0limg(x)=xx0limh(x)=A,则 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A
这个定理很好理解, f ( x ) f(x) f(x) g ( x ) g(x) g(x) h ( x ) h(x) h(x)之间,在 x 0 x_0 x0处极限都为 A A A,两边夹(czf语),那 f ( x ) f(x) f(x) x 0 x_0 x0处极限也为 A A A
证明:任取 ϵ > 0 \epsilon>0 ϵ>0 ∃ δ 1 > 0 \exist\delta_1>0 δ1>0,使 0 < ∣ x − x 0 ∣ < δ 1 0<|x-x_0|<\delta_1 0<xx0<δ1时, ∣ g ( x ) − A ∣ < ϵ |g(x)-A|<\epsilon g(x)A<ϵ ∃ δ 2 > 0 \exist\delta_2>0 δ2>0,使 0 < ∣ x − x 0 ∣ < δ 2 0<|x-x_0|<\delta_2 0<xx0<δ2时, ∣ h ( x ) − A ∣ < ϵ |h(x)-A|<\epsilon h(x)A<ϵ
δ = min ⁡ ( δ 1 , δ 2 ) \delta=\min(\delta_1,\delta_2) δ=min(δ1,δ2),则在半径为 δ \delta δ的去心邻域内, ∣ g ( x ) − A ∣ < ϵ |g(x)-A|<\epsilon g(x)A<ϵ ∣ h ( x ) − A ∣ < ϵ |h(x)-A|<\epsilon h(x)A<ϵ
因此该范围内 g ( x ) > A − ϵ , h ( x ) < A + ϵ g(x)>A-\epsilon,h(x)<A+\epsilon g(x)>Aϵ,h(x)<A+ϵ
又由 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\le f(x)\le h(x) g(x)f(x)h(x) A − ϵ < f ( x ) < A + ϵ A-\epsilon<f(x)<A+\epsilon Aϵ<f(x)<A+ϵ,即 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
因此 ∀ ϵ > 0 , ∃ δ > 0 , \forall \epsilon>0,\exist \delta>0, ϵ>0,δ>0,使 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ。故 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A

由夹逼定理可以推导出一个重要极限: lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x\to 0}\frac{\sin x}{x}=1 x0limxsinx=1
证明过程看选修2-2学刁笔记

1.1.3 函数极限的运算规则

补充一个重要极限: lim ⁡ n → + ∞ ( 1 + 1 n ) n = e \lim_{n\to+\infin}(1+\frac{1}{n})^n=e n+lim(1+n1)n=e
也可以表示为 lim ⁡ n → 0 ( 1 + n ) 1 n = e \lim\limits_{n\to 0}(1+n)^{\frac{1}{n}}=e n0lim(1+n)n1=e,两者是等价的。

运算规则:
1.有界函数与无穷小量的乘积为无穷小。
这一条准则比较有用,例如:求 lim ⁡ x → 0 x sin ⁡ 1 x \lim\limits_{x\to 0}x\sin\frac{1}{x} x0limxsinx1
1 x \frac{1}{x} x1在0附近的变化速度很大, sin ⁡ 1 x \sin\frac{1}{x} sinx1 0 0 0附近剧烈震荡,它在 x → 0 x\to 0 x0时甚至不存在极限。( sin ⁡ ( + ∞ ) \sin(+\infin) sin(+)是1?0?-1?)
但由于函数 y = sin ⁡ x y=\sin x y=sinx是有界函数,所以 y = sin ⁡ 1 x y=\sin\frac{1}{x} y=sinx1也是有界函数( ∣ y ∣ ≤ 1 |y|\le 1 y1
x x x此时是无穷小量,因此 lim ⁡ x → 0 x sin ⁡ 1 x = 0 \lim\limits_{x\to 0}x\sin\frac{1}{x}=0 x0limxsinx1=0

再求一个: lim ⁡ x → + ∞ sin ⁡ ( tan ⁡ 114 x + 514 ) x = lim ⁡ x → + ∞ sin ⁡ ( . . . ) ∗ 1 x = 0 \lim\limits_{x\to+\infin}\frac{\sin(\tan 114x+514)}{x}=\lim\limits_{x\to+\infin}\sin(...)*\frac{1}{x}=0 x+limxsin(tan114x+514)=x+limsin(...)x1=0

2.假设 lim ⁡ x → x 0 f ( x ) = A , lim ⁡ x → x 0 g ( x ) = B \lim\limits_{x\to x_0}f(x)=A,\lim\limits_{x\to x_0}g(x)=B xx0limf(x)=A,xx0limg(x)=B
lim ⁡ x → x 0 f ( x ) ± g ( x ) = A ± B \lim\limits_{x\to x_0}f(x)\pm g(x)=A\pm B xx0limf(x)±g(x)=A±B lim ⁡ x → x 0 f ( x ) g ( x ) = A B \lim\limits_{x\to x_0}f(x)g(x)=AB xx0limf(x)g(x)=AB lim ⁡ x → x 0 f ( x ) g ( x ) = A B ( B ≠ 0 ) \lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B}(B\not =0) xx0limg(x)f(x)=BA(B=0)
注意:这一条成立的前提是 f ( x ) f(x) f(x) g ( x ) g(x) g(x)极限均存在。(和 ln ⁡ A B = ln ⁡ A + ln ⁡ B \ln AB=\ln A+\ln B lnAB=lnA+lnB类似,要求 A , B A,B A,B均为正数)
推论: lim ⁡ x → x 0 f ( x ) n = [ lim ⁡ x → x 0 f ( x ) ] n \lim\limits_{x\to x_0}f(x)^n=[\lim\limits_{x\to x_0}f(x)]^n xx0limf(x)n=[xx0limf(x)]n
注:以上结论也适用于 x → + ∞ x\to+\infin x+的情况。
举例:求 lim ⁡ x → 1 x 2 + 2 x + 1 x + 3 \lim\limits_{x\to 1}\frac{x^2+2x+1}{x+3} x1limx+3x2+2x+1
分析:我们发现分式上下都不为0,极限都存在,因此直接代入 x = 1 x=1 x=1就行。
lim ⁡ x → 1 x 2 + 2 x + 1 x + 3 = 4 4 = 1 \lim\limits_{x\to 1}\frac{x^2+2x+1}{x+3}=\frac{4}{4}=1 x1limx+3x2+2x+1=44=1

再举一例: lim ⁡ x → + ∞ 2 x 2 + 5 x + 3 x 2 + 3 x + 5 \lim\limits_{x\to+\infin}\frac{2x^2+5x+3}{x^2+3x+5} x+limx2+3x+52x2+5x+3
分析: x → + ∞ x\to+\infin x+时,分式上下都趋于正无穷,这时无法直接用上述的运算法则。
我们可以通过一些恒等变换,让分式上下的极限都存在,然后再运用上述法则。
分式上下同除以 x 2 x^2 x2,得 lim ⁡ x → + ∞ 2 x 2 + 5 x + 3 x 2 + 3 x + 5 = lim ⁡ x → + ∞ 2 + 5 x + 3 x 2 1 + 3 x + 5 x 2 = 2 \large\lim\limits_{x\to+\infin}\frac{2x^2+5x+3}{x^2+3x+5}=\lim\limits_{x\to+\infin}\frac{2+\frac{5}{x}+\frac{3}{x^2}}{1+\frac{3}{x}+\frac{5}{x^2}}=2 x+limx2+3x+52x2+5x+3=x+lim1+x3+x252+x5+x23=2

3.假设 lim ⁡ x → x 0 g ( x ) = u \lim\limits_{x\to x_0}g(x)=u xx0limg(x)=u,则 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ x → u f ( u ) \lim\limits_{x\to x_0}f[g(x)]=\lim\limits_{x\to u}f(u) xx0limf[g(x)]=xulimf(u)

1.2 数列的极限

1.2.1 数列极限的定义

对于一个数列 { a n } \{a_n\} {an},若对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ n 0 ∈ Z + \exist n_0\in \Z^+ n0Z+,使 n > n 0 n>n_0 n>n0时, ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ,则称 A A A为数列 { a n } \{a_n\} {an}的极限。记为: lim ⁡ n → + ∞ a n = A \lim_{n\to +\infin}a_n=A n+liman=A
也称 { a n } \{a_n\} {an}收敛于 A A A。若数列 { a n } \{a_n\} {an}无极限,则称 { a n } \{a_n\} {an}发散。

下面证明 a n = ( − 1 ) n a_n=(-1)^n an=(1)n不是收敛数列:
假设 { a n } \{a_n\} {an}是收敛数列,那么对于 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ n 0 ∈ Z + \exist n_0\in \Z^+ n0Z+,使 n > n 0 n>n_0 n>n0时, ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ
ϵ = 1 2 \epsilon=\frac{1}{2} ϵ=21,则在该条件下, ∣ a n − A ∣ < 1 2 |a_n-A|<\frac{1}{2} anA<21,即 A − 1 2 < a n < A + 1 2 A-\frac{1}{2}<a_n<A+\frac{1}{2} A21<an<A+21
无论 n n n有多大, 1 1 1 − 1 -1 1都会在 { a n } \{a_n\} {an}中交替出现,因此我们将 a n = 1 a_n=1 an=1 a n = − 1 a_n=-1 an=1分别代入上式,得:
A − 1 2 < − 1 A-\frac{1}{2}<-1 A21<1 A + 1 2 > 1 A+\frac{1}{2}>1 A+21>1,即 A < − 1 2 A<-\frac{1}{2} A<21 A > 1 2 A>\frac{1}{2} A>21,矛盾!
因此假设不成立, { a n } \{a_n\} {an}不是收敛数列。

1.2.2 收敛数列的性质

1.收敛数列的极限唯一(反证即可)
2.收敛数列的有界性:若 lim ⁡ n → + ∞ a n = A \lim\limits_{n\to+\infin}a_n=A n+liman=A,则 ∃ M > 0 , n 0 > 0 \exist M>0,n_0>0 M>0,n0>0,使 n > n 0 n>n_0 n>n0时,有 ∣ a n ∣ ≤ M |a_n|\le M anM
证明:与函数的局部有界性类似,懒得写了(
3.收敛数列的保号性:若 lim ⁡ n → + ∞ a n = A > 0 \lim\limits_{n\to+\infin}a_n=A>0 n+liman=A>0,则 ∃ n 0 > 0 \exist n_0>0 n0>0,使 n > n 0 n>n_0 n>n0时,有 a n > 0 a_n>0 an>0
证明:取 ϵ = A \epsilon=A ϵ=A
4.收敛数列的极限与子数列的极限相同。
子数列:假设有一个数列 { a n } \{a_n\} {an},有一列正整数 m 1 , m 2 , . . . , m i , . . . m_1,m_2,...,m_i,... m1,m2,...,mi,...满足 m i < m i + 1 m_i<m_{i+1} mi<mi+1,那么 a m 1 , a m 2 , a m 3 , . . . , a m i , . . . a_{m_1},a_{m_2},a_{m_3},...,a_{m_i},... am1,am2,am3,...,ami,...为数列 { a m } \{a_m\} {am}的一个子数列。
我们已知 lim ⁡ n → + ∞ a n = A \lim\limits_{n\to+\infin}a_n=A n+liman=A,想证明 lim ⁡ n → + ∞ a m n = A \lim\limits_{n\to+\infin}a_{m_n}=A n+limamn=A
lim ⁡ n → + ∞ a n = A \lim\limits_{n\to+\infin}a_n=A n+liman=A,可知对于 ∀ ϵ > 0 \forall\epsilon>0 ϵ>0 ∃ n 0 > 0 \exist n_0>0 n0>0,当 n > n 0 n>n_0 n>n0时, ∣ a n − A ∣ < ϵ |a_n-A|<\epsilon anA<ϵ
因为 m 1 < m 2 < . . . m_1<m_2<... m1<m2<... m i m_i mi均为正整数,所以一定存在 k > 0 k>0 k>0,使 n > k n>k n>k时,有 m n > n 0 m_n>n_0 mn>n0
此时 ∣ a m n − A ∣ < ϵ |a_{m_n}-A|<\epsilon amnA<ϵ,因此 lim ⁡ n → + ∞ a m n = A \lim\limits_{n\to+\infin}a_{m_n}=A n+limamn=A

由性质4,可以得到一条推论:若某数列有两个子数列收敛于不同的极限,那么该数列不是收敛数列。(逆否命题)
再看 a n = ( − 1 ) n a_n=(-1)^n an=(1)n,我们取 a 2 n − 1 a_{2n-1} a2n1 a 2 n a_{2n} a2n。易知 a 2 n − 1 = − 1 , a 2 n = 1 a_{2n-1}=-1,a_{2n}=1 a2n1=1,a2n=1
因此 lim ⁡ n → + ∞ a 2 n − 1 = − 1 , lim ⁡ n → + ∞ a 2 n = 1 \lim\limits_{n\to+\infin}a_{2n-1}=-1,\lim\limits_{n\to+\infin}a_{2n}=1 n+lima2n1=1,n+lima2n=1,两个子数列的极限不相等。
所以 { a n } \{a_n\} {an}不是收敛数列。

1.3 无穷小与无穷大

1.3.1 无穷小的定义

无穷小:绝对值可小于任意正数的量(例如 x → + ∞ x\to+\infin x+时, − 1 x -\frac{1}{x} x1是无穷小的, − 1 x → 0 -\frac{1}{x}\to 0 x10
无穷大:绝对值可大于任意正数的量(例如 x → + ∞ x\to+\infin x+时, x 2 x^2 x2是无穷大的, x 2 → + ∞ x^2\to+\infin x2+
0是可以称为无穷小的唯一实数。

1.3.2 无穷量的性质

1. lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0} f(x)=A xx0limf(x)=A等价于 x → x 0 x\to x_0 xx0时, f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,其中 α \alpha α是无穷小量。
充分性证明: ∀ ϵ > 0 , ∃ δ > 0 \forall\epsilon>0,\exist\delta>0 ϵ>0,δ>0,使 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ。取 α = f ( x ) − A \alpha=f(x)-A α=f(x)A,则 ∣ α ∣ |\alpha| α可小于任何 ϵ > 0 \epsilon>0 ϵ>0
因此 α \alpha α是无穷小,且 f ( x ) = A + α f(x)=A+\alpha f(x)=A+α
必要性证明: x → x 0 x\to x_0 xx0时, f ( x ) = A + α f(x)=A+\alpha f(x)=A+α,则 ∣ f ( x ) − A ∣ = ∣ α ∣ |f(x)-A|=|\alpha| f(x)A=α,由无穷小的定义,对任意正数 ϵ > 0 \epsilon>0 ϵ>0,有 ∣ α ∣ < ϵ |\alpha|<\epsilon α<ϵ
因此 lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_0}f(x)=A xx0limf(x)=A

2.无穷小的倒数是无穷大,无穷大的倒数是无穷小(废话)

1.3.3 无穷量的比较

无穷小量都趋于0,但一些无穷小量趋于0的速度更快,另一些无穷小量趋于0的速度更快。
例如, x → 0 x\to 0 x0时, x 2 x^2 x2 2 x 2x 2x趋于0的速度更快, lim ⁡ x → 0 x 2 2 x = lim ⁡ x → 0 x 2 = 0 \lim\limits_{x\to 0}\frac{x^2}{2x}=\lim\limits_{x\to 0}\frac{x}{2}=0 x0lim2xx2=x0lim2x=0
x → + ∞ x\to+\infin x+时, 1 x 2 \frac{1}{x^2} x21 1 x \frac{1}{x} x1趋于0的速度更快, lim ⁡ x → + ∞ 1 x 2 1 x = lim ⁡ x → + ∞ 1 x = 0 \lim\limits_{x\to+\infin}\frac{\frac{1}{x^2}}{\frac{1}{x}}=\lim\limits_{x\to+\infin}\frac{1}{x}=0 x+limx1x21=x+limx1=0
一般地说,假设 α , β \alpha,\beta α,β均为无穷小量。
lim ⁡ β α = 0 \lim\frac{\beta}{\alpha}=0 limαβ=0,则称 β \beta β α \alpha α的高阶无穷小,记作 β = o ( α ) \beta=o(\alpha) β=o(α)
lim ⁡ β α = ∞ \lim\frac{\beta}{\alpha}=\infin limαβ=,则称 β \beta β α \alpha α的低阶无穷小。
lim ⁡ β α = c ≠ 0 \lim\frac{\beta}{\alpha}=c\not =0 limαβ=c=0,则称 β \beta β α \alpha α的同阶无穷小。
lim ⁡ β α k = c ≠ 0 \lim\frac{\beta}{\alpha^k}=c\not =0 limαkβ=c=0,则称 β \beta β α \alpha α k k k阶无穷小。
lim ⁡ β α = 1 \lim\frac{\beta}{\alpha}=1 limαβ=1,则称 β \beta β α \alpha α的等价无穷小,记作 α ∼ β \alpha\sim\beta αβ
在乘除法中,等价无穷小是可以相互替换的。

例题:已知 x → 0 x\to 0 x0,证明 ( 1 + x ) 1 n − 1 ∼ x n (1+x)^\frac{1}{n}-1\sim \frac{x}{n} (1+x)n11nx(谔谔)
法一:
lim ⁡ x → 0 ( 1 + x ) 1 n − 1 x n = lim ⁡ x → 0 1 n ( 1 + x ) 1 n − 1 1 n \lim\limits_{x\to 0}\frac{(1+x)^\frac{1}{n}-1}{\frac{x}{n}}=\lim\limits_{x\to 0}\frac{\frac{1}{n}(1+x)^{\frac{1}{n}-1}}{\frac{1}{n}} x0limnx(1+x)n11=x0limn1n1(1+x)n11(洛!)= lim ⁡ x → 0 ( 1 + x ) 1 n − 1 = 1 \lim\limits_{x\to 0}(1+x)^{\frac{1}{n}-1}=1 x0lim(1+x)n11=1
法二:
注意到 a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + . . . + 1 ) a^n-1=(a-1)(a^{n-1}+a^{n-2}+...+1) an1=(a1)(an1+an2+...+1)(其实就是等比数列求和公式把 q − 1 q-1 q1挪到另一边)
因此 a − 1 = a n − 1 a n − 1 + a n − 2 + . . . + 1 a-1=\frac{a^n-1}{a^{n-1}+a^{n-2}+...+1} a1=an1+an2+...+1an1
代入 a = ( 1 + x ) 1 n a=(1+x)^{\frac{1}{n}} a=(1+x)n1得: ( 1 + x ) 1 n − 1 = x ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + . . . + ( 1 + x ) 1 n + 1 (1+x)^{\frac{1}{n}-1}=\frac{x}{(1+x)^{\frac{n-1}{n}}+(1+x)^\frac{n-2}{n}+...+(1+x)^\frac{1}{n}+1} (1+x)n11=(1+x)nn1+(1+x)nn2+...+(1+x)n1+1x
于是 lim ⁡ x → 0 ( 1 + x ) 1 n − 1 x n = lim ⁡ x → 0 x ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + . . . + ( 1 + x ) 1 n + 1 ∗ n x = lim ⁡ x → 0 n ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + . . . + ( 1 + x ) 1 n + 1 \lim\limits_{x\to 0}\frac{(1+x)^\frac{1}{n}-1}{\frac{x}{n}}=\lim\limits_{x\to 0}\frac{x}{(1+x)^{\frac{n-1}{n}}+(1+x)^\frac{n-2}{n}+...+(1+x)^\frac{1}{n}+1}*\frac{n}{x}=\lim\limits_{x\to 0}\frac{n}{(1+x)^{\frac{n-1}{n}}+(1+x)^\frac{n-2}{n}+...+(1+x)^\frac{1}{n}+1} x0limnx(1+x)n11=x0lim(1+x)nn1+(1+x)nn2+...+(1+x)n1+1xxn=x0lim(1+x)nn1+(1+x)nn2+...+(1+x)n1+1n
= lim ⁡ x → 0 n n = 1 =\lim\limits_{x\to 0}\frac{n}{n}=1 =x0limnn=1
太麻烦,还是洛必达好(

另: x → 0 x\to 0 x0时, cos ⁡ x − 1 ∼ − 1 2 x 2 \cos x-1\sim-\frac{1}{2}x^2 cosx121x2
证明: lim ⁡ x → 0 cos ⁡ x − 1 − 1 2 x 2 = lim ⁡ x → 0 1 − 2 sin ⁡ 2 x 2 − 1 − 1 2 x 2 = lim ⁡ x → 0 4 sin ⁡ 2 x 2 x 2 = lim ⁡ x → 0 4 ( x 2 ) 2 x 2 = 1 \lim\limits_{x\to 0}\frac{\cos x-1}{-\frac{1}{2}x^2}=\lim\limits_{x\to 0}\large\frac{1-2\sin^2\frac{x}{2}-1}{-\frac{1}{2}x^2}=\lim\limits_{x\to 0}\frac{4\sin^2\frac{x}{2}}{x^2}=\lim\limits_{x\to 0}\frac{4(\frac{x}{2})^2}{x^2}=1 x0lim21x2cosx1=x0lim21x212sin22x1=x0limx24sin22x=x0limx24(2x)2=1

常用的等价无穷小(
在这里插入图片描述
随便挑几个证一下(
u = arcsin ⁡ x u=\arcsin x u=arcsinx,则 x = sin ⁡ u x=\sin u x=sinu lim ⁡ x → 0 arcsin ⁡ x x = lim ⁡ x → 0 u sin ⁡ u = 1 \lim\limits_{x\to 0}\frac{\arcsin x}{x}=\lim\limits_{x\to 0}\frac{u}{\sin u}=1 x0limxarcsinx=x0limsinuu=1
lim ⁡ x → 0 x − sin ⁡ x 1 6 x 3 = lim ⁡ x → 0 1 − cos ⁡ x 1 2 x 2 \lim\limits_{x\to 0}\frac{x-\sin x}{\frac{1}{6}x^3}=\lim\limits_{x\to 0}\frac{1-\cos x}{\frac{1}{2}x^2} x0lim61x3xsinx=x0lim21x21cosx(洛!) = lim ⁡ x → 0 sin ⁡ x x =\lim\limits_{x\to 0}\frac{\sin x}{x} =x0limxsinx(洛!) = 1 =1 =1

1.4 函数的连续性

1.4.1 连续的定义

函数在 x 0 x_0 x0处连续,就是说它的函数图象从 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))往两边都能延伸。
换句话说,就是在 x 0 x_0 x0附近, f ( x ) f(x) f(x)都在 f ( x 0 ) f(x_0) f(x0)附近。
我们把满足 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)的点 x 0 x_0 x0,称为函数在 x 0 x_0 x0处连续。
也可以写成: lim ⁡ Δ x → 0 f ( x 0 + Δ x ) = f ( x 0 ) \lim\limits_{\Delta x\to 0}f(x_0+\Delta x)=f(x_0) Δx0limf(x0+Δx)=f(x0)
上式 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)有三层含义:
1. f ( x ) f(x) f(x) x 0 x_0 x0有极限
2. f ( x ) f(x) f(x) x 0 x_0 x0有定义
3.极限值和函数值相等
从连续的定义,我们可以类比左极限和有极限的定义,得到左连续和右连续的定义。
左连续: lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^-}f(x)=f(x_0) xx0limf(x)=f(x0)
右连续: lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^+}f(x)=f(x_0) xx0+limf(x)=f(x0)
容易看出连续与左右均连续是等价的。

函数在开区间 ( a , b ) (a,b) (a,b)连续,那么该函数在 ( a , b ) (a,b) (a,b)内任意一点连续。
在闭区间 [ a , b ] [a,b] [a,b]连续,那么在 ( a , b ) (a,b) (a,b)连续,且在左端点 a a a处右连续,右端点 b b b处左连续。

下面用定义证明 f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx R \R R上连续:
任取一点 x 0 x_0 x0,要证:增量 Δ x → 0 \Delta x\to 0 Δx0时, lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) = 0 \lim\limits_{\Delta x\to 0}f(x_0+\Delta x)-f(x_0)=0 Δx0limf(x0+Δx)f(x0)=0
化简: lim ⁡ Δ x → 0 sin ⁡ ( x 0 + Δ x ) − sin ⁡ x 0 = lim ⁡ Δ x → 0 2 cos ⁡ ( x 0 + Δ x 2 ) sin ⁡ Δ x 2 \lim\limits_{\Delta x\to 0}\sin(x_0+\Delta x)-\sin x_0=\lim\limits_{\Delta x\to 0}2\cos(x_0+\frac{\Delta x}{2})\sin\frac{\Delta x}{2} Δx0limsin(x0+Δx)sinx0=Δx0lim2cos(x0+2Δx)sin2Δx(和差化积)
= lim ⁡ Δ x → 0 2 Δ x 2 cos ⁡ ( x 0 + Δ x 2 ) = lim ⁡ Δ x → 0 Δ x cos ⁡ ( x 0 + Δ x 2 ) =\lim\limits_{\Delta x\to 0}2\frac{\Delta x}{2}\cos(x_0+\frac{\Delta x}{2})=\lim\limits_{\Delta x\to 0}\Delta x\cos(x_0+\frac{\Delta x}{2}) =Δx0lim22Δxcos(x0+2Δx)=Δx0limΔxcos(x0+2Δx)
Δ x \Delta x Δx是无穷小量, cos ⁡ ( x 0 + Δ x 2 ) \cos(x_0+\frac{\Delta x}{2}) cos(x0+2Δx) [ − 1 , 1 ] [-1,1] [1,1]内的实数。因此它们之积为无穷小。
所以 lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) = 0 \lim\limits_{\Delta x\to 0}f(x_0+\Delta x)-f(x_0)=0 Δx0limf(x0+Δx)f(x0)=0

补充和差化积公式:(使用时别漏了系数2)
sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ。//帅+帅=帅哥
sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ。 //帅-帅=哥帅
cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ。 //哥+哥=哥哥
cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ。//哥-哥=负嫂嫂

1.4.2 间断点

间断,就是不连续;连续,就是不间断(废话
什么情况会导致间断?刚才在连续的定义中,我们提到了三个条件:有极限,有定义,极限与函数值相等。
三个条件只要有一个不满足就会导致间断。因此,间断点有以下几种常见的类型:
可去间断点:存在极限,但没有定义;或者有定义,但极限与函数值不相等。比如 f ( x ) = x ( x ≠ 0 ) , f ( x ) = 114514 ( x = 0 ) f(x)=x(x\not=0),f(x)=114514(x=0) f(x)=x(x=0),f(x)=114514(x=0),存在极限 lim ⁡ x → 0 f ( x ) = 0 \lim\limits_{x\to 0}f(x)=0 x0limf(x)=0,但 f ( 0 ) = 114514 ≠ 0 f(0)=114514\not=0 f(0)=114514=0
跳跃间断点:左极限和右极限都存在,但不相等。比如 f ( x ) = − 114514 ( x < 0 ) , f ( x ) = 114514 ( x ≥ 0 ) f(x)=-114514(x<0),f(x)=114514(x\ge 0) f(x)=114514(x<0),f(x)=114514(x0)
以上两类称为第一类间断点。(这一类间断点左右极限都存在)

无穷间断点:左极限,右极限至少有一个为无穷。比如 f ( x ) = 1919810 x f(x)=\frac{1919810}{x} f(x)=x1919810
振荡间断点:当自变量趋于某点时,函数值在某个范围内振荡无数次。比如 f ( x ) = sin ⁡ 1 x f(x)=\sin\frac{1}{x} f(x)=sinx1
以上两类称为第二类间断点。(这一类间断点左极限、右极限至少有一个不存在)
刺激

1.4.3 连续函数的运算

1.两个(在某些区间内)连续的函数的和、差、乘积、商(在这些区间内)都是连续的(作商时要求除数不为0),它们组成的复合函数也是连续的。
这一条性质由极限的运算法则可以轻松推出。
例如 lim ⁡ x → x 0 f ( x ) + g ( x ) = lim ⁡ x → x 0 f ( x ) + lim ⁡ x → x 0 g ( x ) = f ( x 0 ) + g ( x 0 ) \lim\limits_{x\to x_0}f(x)+g(x)=\lim\limits_{x\to x_0}f(x)+\lim\limits_{x\to x_0}g(x)=f(x_0)+g(x_0) xx0limf(x)+g(x)=xx0limf(x)+xx0limg(x)=f(x0)+g(x0)
lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits_{x\to x_0}g(x)=u_0 xx0limg(x)=u0,则 lim ⁡ x → x 0 f ( g ( x ) ) = lim ⁡ x → u 0 f ( x ) = f ( u 0 ) = f ( g ( x 0 ) ) \lim\limits_{x\to x_0}f(g(x))=\lim\limits_{x\to u_0}f(x)=f(u_0)=f(g(x_0)) xx0limf(g(x))=xu0limf(x)=f(u0)=f(g(x0))

2.连续函数 y = f ( x ) y=f(x) y=f(x)的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)也是反函数。
证明:我们知道,如果连续函数有反函数,那这个连续函数一定是单调的。如果不单调,那么某个函数值可以对应到两个不同的 x x x,那么这个函数不可能有反函数。
不妨设 f f f单调递增,定义域为 [ a , b ] [a,b] [a,b],则值域为 [ f ( a ) , f ( b ) ] [f(a),f(b)] [f(a),f(b)]。令 x 0 ∈ [ a , b ] x_0\in [a,b] x0[a,b] f ( x 0 ) = y 0 f(x_0)=y_0 f(x0)=y0
我们想证明 lim ⁡ y → y 0 x = x 0 \lim\limits_{y\to y_0}x=x_0 yy0limx=x0,即证 ∀ ϵ > 0 , ∃ δ > 0 \forall\epsilon>0,\exist\delta>0 ϵ>0,δ>0,在 0 < ∣ y − y 0 ∣ < δ 0<|y-y_0|<\delta 0<yy0<δ时, ∣ x − x 0 ∣ < ϵ |x-x_0|<\epsilon xx0<ϵ。分类讨论:
1.当 a ≤ x 0 < a + ϵ a\le x_0<a+\epsilon ax0<a+ϵ时,取 δ = min ⁡ { y 0 − f ( a ) , f ( x 0 + ϵ ) − y 0 } \delta=\min\{y_0-f(a),f(x_0+\epsilon)-y_0\} δ=min{y0f(a),f(x0+ϵ)y0}
2.当 a + ϵ ≤ x 0 ≤ b − ϵ a+\epsilon\le x_0\le b-\epsilon a+ϵx0bϵ时,取 δ = min ⁡ { y 0 − f ( x 0 − ϵ ) , f ( x 0 + ϵ ) − y 0 } \delta=\min\{y_0-f(x_0-\epsilon),f(x_0+\epsilon)-y_0\} δ=min{y0f(x0ϵ),f(x0+ϵ)y0}
3.当 b − ϵ < x 0 ≤ b b-\epsilon<x_0\le b bϵ<x0b时,取 δ = min ⁡ { y 0 − f ( x 0 − ϵ ) , f ( b ) − y 0 } \delta=\min\{y_0-f(x_0-\epsilon),f(b)-y_0\} δ=min{y0f(x0ϵ),f(b)y0}
这三种情况下,取对应的 δ \delta δ时,均能使 0 < ∣ y − y 0 ∣ < δ 0<|y-y_0|<\delta 0<yy0<δ时满足 ∣ x − x 0 ∣ < ϵ |x-x_0|<\epsilon xx0<ϵ
因此 lim ⁡ y → y 0 f − 1 ( y ) = x 0 \lim\limits_{y\to y_0}f^{-1}(y)=x_0 yy0limf1(y)=x0,即 f − 1 f^{-1} f1为连续函数。

注:其实连续函数相当于能用一笔画出来的函数,反函数相当于沿直线 y = x y=x y=x轴对称,如果原函数能一笔画出来,那轴对称后的反函数也能一笔画出来(

3.初等函数在定义区间内都是连续函数。
之所以说“定义区间”,是因为有的初等函数定义域是由离散点组成的,这些离散的点两边没有定义,无法讨论连续性(
比如 y = sin ⁡ x − 1 y=\sqrt{\sin x-1} y=sinx1 。这个函数有定义时必须有 sin ⁡ x − 1 ≥ 0 \sin x-1\ge 0 sinx10,即 x = 2 k π + π 2 x=2k\pi+\frac{\pi}{2} x=2kπ+2π

1.4.4 连续函数的性质

连续函数显然有极限,那么就满足局部有界性和局部保号性,在1.1.2(
1.有界性与最大值最小值定理:一个函数在闭区间上连续,那么这个函数一定在这个区间内有界,且一定能取到最大值、最小值。

2.零点存在性定理: f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]连续, f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上有零点。
证明:貌似可以不断二分,如果 f ( m i d ) = 0 f(mid)=0 f(mid)=0,那么 m i d mid mid就是零点。如果 f ( m i d ) ≠ 0 f(mid)\not=0 f(mid)=0,则看 f ( a ) f ( m i d ) < 0 f(a)f(mid)<0 f(a)f(mid)<0还是 f ( m i d ) f ( b ) < 0 f(mid)f(b)<0 f(mid)f(b)<0,分别取区间 [ a , m i d ] [a,mid] [a,mid] [ m i d , b ] [mid,b] [mid,b],然后转化为证那个区间内有零点。
(大概也许可能是这样的

3.介值定理: f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]连续,且 f ( a ) ≠ f ( b ) f(a)\not=f(b) f(a)=f(b),则对于 c ∈ [ min ⁡ { f ( a ) , f ( b ) } , max ⁡ { f ( a ) , f ( b ) } ] c\in[\min\{f(a),f(b)\},\max\{f(a),f(b)\}] c[min{f(a),f(b)},max{f(a),f(b)}],一定 ∃ ξ ∈ [ a , b ] \exist\xi\in[a,b] ξ[a,b]使 f ( ξ ) = c f(\xi)=c f(ξ)=c
证明:令 g ( x ) = f ( x ) − c g(x)=f(x)-c g(x)=f(x)c,则 g ( a ) g ( b ) < 0 g(a)g(b)<0 g(a)g(b)<0 g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上一定有零点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值