求二维离散点集的凸包点

90 篇文章 94 订阅 ¥69.90 ¥99.00
这篇博客介绍了求解二维离散点集凸包问题的算法思路,首先讲解了向量积的数学知识,然后提出了以纵坐标最小的点为基准进行极角排序的方法。通过判断相邻两点连线是否向左拐弯来确定凸包上的点,利用向量积判断方向。博主提供了代码实现,并附带测试结果和参考资料。
摘要由CSDN通过智能技术生成

1 算法思路

这类求解最外围的点集问题,我们称之为凸包问题,光光是⽤⾁眼去观察的话,这种问题我们很快就能得出答案,并且能马上说出哪⼏个点
是解,但是如果让你敲代码,去解决这类的问题,可能很多⼈会不知道如何去下⼿。
在讲解凸包这类问题的解法前,我们⾸先要先讲下向量积这个数学⼩知识。

          了解了上⾯这个数学⼩知识后,我们现在可以正式开始着⼿去解决凸包问题了,⾸先我们先思考下,如果我们要去解决凸包问题,我们就必须要⼀个个去寻找最外围的点,万事开头难,第⼀个点该从哪⾥找起呢?
         所有的点都在⼀个⼆维的平⾯上,细想⼀下,其中y轴(纵坐标)最⼩的点是不是我们要找的最外围的点之⼀呢?答案是肯定的,如果纵坐标最⼩的点有多个,那么我们就选取x轴(横坐标)最⼩的⼀个,如果这样的点也有多个也就是重合,也不影响解题。以此类推,其实也可以找
纵坐标最⼤的点,还有横坐标最⼩的点,或者是横坐标最⼤的点作为基准点。这⾥呢,我们就以纵坐标最⼩的点作为我们的基准点,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thequitesunshine007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值